Using a comprehensive multimodal quantitative MRI protocol, we study the relationships between different microstructural metrics inside lesional tissue and investigate the heterogeneous pathological processes underlying alterations visible as hyperintense plaques in FLAIR images. Our preliminary results suggest that, although all the metrics can detect differences between lesions and normal appearing white matter, not all are directly associated with clinical status. Moreover, many metrics are intercorrelated and should not be considered as independent information when analyzing clinical outcomes. Understanding the clinical value of these parameters can advance the understanding of complex microstructural processes in neurological diseases and informs MRI protocol designs.
1. D. TB, John P, M. RR, Richard R, Sverre M, Lars B. Axonal Transection in the Lesions of Multiple Sclerosis. N Engl J Med. 1998;338(5):278-285. doi:10.1056/NEJM199801293380502
2. Evangelou N, Konz D, Esiri MM, Smith S, Palace J, Matthews PM. Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis. Brain. 2000;123 ( Pt 9:1845-1849.
3. Evangelou N, Esiri MM, Smith S, Palace J, Matthews PM. Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann Neurol. 2000;47(3):391-395. doi:10.1002/1531-8249(200003)47:3<391::AID-ANA20>3.0.CO;2-J
4. Lassmann H, Brück W, Lucchinetti C. Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med. 2001;7(3):115-121. doi:https://doi.org/10.1016/S1471-4914(00)01909-2
5. Lassmann H. Multiple Sclerosis Pathology. Cold Spring Harb Perspect Med. 2018;8(3). doi:10.1101/cshperspect.a028936
6. Granziera C, Wuerfel J, Barkhof F, et al. Quantitative magnetic resonance imaging towards clinical application in multiple sclerosis. Brain. 2021;144(5):1296-1311. doi:10.1093/brain/awab029
7. Lu PJ, Barakovic M, Weigel M, et al. GAMER-MRI in Multiple Sclerosis Identifies the Diffusion-Based Microstructural Measures That Are Most Sensitive to Focal Damage: A Deep-Learning-Based Analysis and Clinico-Biological Validation. Front Neurosci. 2021. doi:10.3389/fnins.2021.647535
8. Mussard E, Hilbert T, Forman C, Meuli R, Thiran JP, Kober T. Accelerated MP2RAGE imaging using Cartesian phyllotaxis readout and compressed sensing reconstruction. Magn Reson Med. 2020. doi:10.1002/mrm.28244
9. Piredda GF, Hilbert T, Canales-Rodríguez EJ, et al. Fast and high-resolution myelin water imaging: Accelerating multi-echo GRASE with CAIPIRINHA. Magn Reson Med. 2021. doi:10.1002/mrm.28427
10. Breuer FA, Blaimer M, Mueller MF, et al. Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA). Magn Reson Med. 2006. doi:10.1002/mrm.20787
11. Ashburner J. SPM: A history. Neuroimage. 2012;62(2):791-800. doi:https://doi.org/10.1016/j.neuroimage.2011.10.025
12. Gaser, C., Dahnke R. CAT-a computational anatomy toolbox for the analysis of structural MRI data. HBM. 2016:336–348.
13. Patenaude B, Smith SM, Kennedy DN, Jenkinson M. A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage. 2011. doi:10.1016/j.neuroimage.2011.02.046
14. Piredda GF, Hilbert T, Granziera C, et al. Quantitative brain relaxation atlases for personalized detection and characterization of brain pathology. Magn Reson Med. 2020;83(1):337-351. doi:https://doi.org/10.1002/mrm.27927
15. Canales-Rodríguez EJ, Pizzolato M, Piredda GF, et al. Comparison of non-parametric T2 relaxometry methods for myelin water quantification. Med Image Anal. 2021;69:101959. doi:https://doi.org/10.1016/j.media.2021.101959
16. Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. In: NeuroImage. ; 2004. doi:10.1016/j.neuroimage.2004.07.051
17. Tournier J-D, Smith R, Raffelt D, et al. MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. Neuroimage. 2019;202:116137. doi:https://doi.org/10.1016/j.neuroimage.2019.116137
18. Cordero-Grande L, Christiaens D, Hutter J, Price AN, Hajnal J V. Complex diffusion-weighted image estimation via matrix recovery under general noise models. Neuroimage. 2019. doi:10.1016/j.neuroimage.2019.06.039
19. Andersson JLR, Graham MS, Zsoldos E, Sotiropoulos SN. Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. Neuroimage. 2016;141:556-572. doi:https://doi.org/10.1016/j.neuroimage.2016.06.058
20. Andersson JLR, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage. 2016;125:1063-1078. doi:10.1016/J.NEUROIMAGE.2015.10.019
21. Andersson JLR, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage. 2003;20(2):870-888. doi:https://doi.org/10.1016/S1053-8119(03)00336-7
22. Tustison NJ, Avants BB, Cook PA, et al. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010;29(6):1310-1320. doi:10.1109/TMI.2010.2046908
23. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. {NODDI}: {P}ractical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage. 2012;61(4):1000-1016. doi:http://dx.doi.org/10.1016/j.neuroimage.2012.03.072
24. Daducci A, Canales-Rodríguez EJ, Zhang H, Dyrby TB, Alexander DC, Thiran J-P. Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data. Neuroimage. 2015;105:32-44. doi:http://dx.doi.org/10.1016/j.neuroimage.2014.10.026
25. Kaden E, Kelm ND, Carson RP, Does MD, Alexander DC. Multi-compartment microscopic diffusion imaging. Neuroimage. 2016;139:346-359. doi:https://doi.org/10.1016/j.neuroimage.2016.06.002
26. Greve DN, Fischl B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage. 2009;48(1):63-72. doi:https://doi.org/10.1016/j.neuroimage.2009.06.060
27. Jenkinson M, Bannister P, Brady M, Smith S. Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images. Neuroimage. 2002;17(2):825-841. doi:https://doi.org/10.1006/nimg.2002.1132
28. Cohen J. Statistical Power Analysis for the Behavioural Sciences (2nd Ed.). New York: Lawrence Erlbaum. In: Statistical Power Anaylsis for the Behavioural Science (2nd Edition). ; 1988.
Figure 1: Acquired images on the left and reconstructed microstructural maps used in our protocol. FLAIR images served for lesions segmentation; MP2RAGE to derive averaged T1 and T1 z-scores maps, dMRIs to fit the NODDI and SMT models; mcGRASE to derive myelin, free water and intra+extra axonal water fraction maps as well as averaged intra+extra axonal T2 using multi-compartment T2 modelling.
Table 1: Results of generalised Linear Model for repeated measures accounting for age, sex and phenotype as confounding factor. Statistically significant results after Bonferroni correction are highlighted in bold.
Table 2: Summary of the regression results to identify associations between the microstructural metrics of different models. For each entry, r is the Pearson’s coefficient and R^2=r2. Values highlighted in bold are those resulted in medium or strong association accounting for Cohen’s effect size and are also shown as scatter plots in Figure 2.
Figure 2: Scatter plots of strong relationships between microstructural metrics highlighted in Table 2. Points are color-coded by phenotype (RR=relapsing-remitting, PP=primary progressive, SP=secondary progressive) and marked differently for each subject involved in our study. Overall regression line is displayed in black with 95% confidence interval in grey.
Table 3: Partial correlations between microstructural metrics and the expanded disability status score (EDSS), accounting for age, sex and phenotype as confounding factors. Statistically significant results are highlighted in bold.