We present an unsupervised deep image registration framework for MR image reconstruction. Specifically, even and odd echo images from fast spin echo-based sequence are nonlinearly registered using a convolutional network that estimates the deformation field. The registered echo images are then averaged for noise reduction. The proposed framework was evaluated across four imaging contrasts (T1w, T2w, FLAIR, and DWI) from a low-field MR scanner and was found to outperform nonlinear registration from advanced normalization tools, yielding sharper image quality and preserving important pathology features.
[1] Sheth KN, Mazurek MH ,Yuen MM, Cahn BA, Shah JT, Ward A, Kim JA, Gilmore EJ, Falcone GJ, Petersen N, Gobeske KT, Kaddouh F, Hwang DY, Schindler J, Sansing L, Matouk C, Rothberg J, Sze G, Siner J, Rosen MS, Spudich S, Kimberly WT. Assessment of BrainInjury Using Portable, Low-Field Magnetic Resonance Imaging at the Bedside of Critically Ill Patients. JAMA Neurol. 2020 Sep 8 :e203263.doi:10.1001/jamaneurol.2020.3263. Epub ahead of print.PMID:32897296;PMCID:
[3] Wald LL, McDaniel PC, Witzel T, Stockmann JP, Cooley CZ. Low- cost and portable MRI. J Magn Reson Imaging. 2020;52:686- 696.
[4] Marques JP, Simonis FFJ, Webb AG. Low- field MRI: an MR physics perspective. J Magn Reson Imaging. 2019;49:1528- 1542
[5] Rearick T, Charvat G, Rosen MS, Rothberg J. Noise Suppression Methods and Apparatus. US Patent 9,797,971. March 10, 2016
[6] Schlemper J, Salehi SSM, Lazarus C, Dyvorne H, O’Halloran R, de Zwart N, Sacolick L, By S, Stein J, Rueckert D, Sofka M, Kundu P. Deep Learning MRI Reconstruction in Application to Point-of-Care MRI Proceedings of the 2020 ISMRM & SMRT Annual Meeting & Exhibition. Abstract Number 0991.
[7] Schlemper J, Dey N, Salehi SSM, Lazarus C, O’Halloran R, Kundu P, Sofka M. Unsupervised Denoising for Low-field Diffusion MRI. Proceedings of the 2021 ISMRM & SMRT Annual Meeting & Exhibition. Abstract Number 2190.
[8] Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L., Leach, M. O., & Hawkes, D. J. (1999). Nonrigid registration using free-form deformations: application to breast MR images. IEEE transactions on medical imaging, 18(8), 712-721.
[9] Vercauteren, T., Pennec, X., Perchant, A. and Ayache, N., 2009. Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage, 45(1), pp.S61-S72
[10] Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C. (2011). A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage, 54(3), 2033-2044.
[11] Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J. and Dalca, A.V., 2019. Voxelmorph: a learning framework for deformable medical image registration. IEEE transactions on medical imaging, 38(8), pp.1788-1800.
[12] Dalca, A.V., Balakrishnan, G., Guttag, J. and Sabuncu, M.R., 2018, September. Unsupervised learning for fast probabilistic diffeomorphic registration. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 729-738). Springer, Cham.
[13] Qiu, H., Qin, C., Schuh, A., Hammernik, K., & Rueckert, D. (2021, February). Learning Diffeomorphic and Modality-invariant Registration using B-splines. In Medical Imaging with Deep Learning.
[14] Thorley, A., Jia, X., Chang, H.J., Liu, B., Bunting, K., Stoll, V., de Marvao, A., O’Regan, D.P., Gkoutos, G., Kotecha, D. and Duan, J., 2021, September. Nesterov Accelerated ADMM for Fast Diffeomorphic Image Registration. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 150-160). Springer, Cham.
[15] Ashburner, J., 2007. A fast diffeomorphic image registration algorithm. Neuroimage, 38(1), pp.95-113.
[16] Jaderberg, M., Simonyan, K., & Zisserman, A. (2015). Spatial transformer networks. Advances in neural information processing systems, 28, 2017-2025.