Genetically engineered multicolor fluorescent proteins have changed biomedical research by enabling multiplexed mapping of transgenes expression. However, although MRI reporter genes have been developed, the ability to monitor multiple reporters that are expressed simultaneously and present them in a multicolor fashion is still needed. Here, we present an MRI-based system, comprising computationally designed reporters (enzymes) combined with MRI-detectable synthetic probes (substrates) for non-invasive color-encoded MRI mapping of transgene expression. Systemically administered reporter probes exclusively accumulate in cells expressing the designed reporter genes allowing their spatial display as pseudo-colored CEST MRI maps as demonstrated in both tumor model and viral-delivery system.
1. Genove, G.; DeMarco, U.; Xu, H.; Goins, W. F.; Ahrens, E. T., A new transgene reporter for in vivo magnetic resonance imaging. Nat Med 2005, 11 (4), 450-4.
2. Cohen, B.; Ziv, K.; Plaks, V.; Israely, T.; Kalchenko, V.; Harmelin, A.; Benjamin, L. E.; Neeman, M., MRI detection of transcriptional regulation of gene expression in transgenic mice. Nat Med 2007, 13 (4), 498-503.
3. Gilad, A. A.; McMahon, M. T.; Walczak, P.; Winnard, P. T., Jr.; Raman, V.; van Laarhoven, H. W.; Skoglund, C. M.; Bulte, J. W.; van Zijl, P. C., Artificial reporter gene providing MRI contrast based on proton exchange. Nat Biotechnol 2007, 25 (2), 217-9.
4. Minn, I.; Bar-Shir, A.; Yarlagadda, K.; Bulte, J. W.; Fisher, P. B.; Wang, H.; Gilad, A. A.; Pomper, M. G., Tumor-specific expression and detection of a CEST reporter gene. Magn Reson Med 2015, 74 (2), 544-9.
5. Mukherjee, A.; Wu, D.; Davis, H. C.; Shapiro, M. G., Non-invasive imaging using reporter genes altering cellular water permeability. Nat Commun 2016, 7, 13891.
6. Schilling, F.; Ros, S.; Hu, D. E.; D'Santos, P.; McGuire, S.; Mair, R.; Wright, A. J.; Mannion, E.; Franklin, R. J.; Neves, A. A.; Brindle, K. M., MRI measurements of reporter-mediated increases in transmembrane water exchange enable detection of a gene reporter. Nat Biotechnol 2017, 35 (1), 75-80.
7. Shaner, N. C.; Campbell, R. E.; Steinbach, P. A.; Giepmans, B. N.; Palmer, A. E.; Tsien, R. Y., Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 2004, 22 (12), 1567-72.
8. Liu, G.; Moake, M.; Har-el, Y. E.; Long, C. M.; Chan, K. W.; Cardona, A.; Jamil, M.; Walczak, P.; Gilad, A. A.; Sgouros, G.; van Zijl, P. C.; Bulte, J. W.; McMahon, M. T., In vivo multicolor molecular MR imaging using diamagnetic chemical exchange saturation transfer liposomes. Magn Reson Med 2012, 67 (4), 1106-13.
9. McMahon, M. T.; Gilad, A. A.; DeLiso, M. A.; Berman, S. M.; Bulte, J. W.; van Zijl, P. C., New "multicolor" polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI. Magn Reson Med 2008, 60 (4), 803-12.
10. Goldenzweig, A.; Goldsmith, M.; Hill, S. E.; Gertman, O.; Laurino, P.; Ashani, Y.; Dym, O.; Unger, T.; Albeck, S.; Prilusky, J.; Lieberman, R. L.; Aharoni, A.; Silman, I.; Sussman, J. L.; Tawfik, D. S.; Fleishman, S. J., Automated Structure- and Sequence-Based Design of Proteins for High Bacterial Expression and Stability. Mol Cell 2016, 63 (2), 337-346.
11. Khersonsky, O.; Lipsh, R.; Avizemer, Z.; Ashani, Y.; Goldsmith, M.; Leader, H.; Dym, O.; Rogotner, S.; Trudeau, D. L.; Prilusky, J.; Amengual-Rigo, P.; Guallar, V.; Tawfik, D. S.; Fleishman, S. J., Automated Design of Efficient and Functionally Diverse Enzyme Repertoires. Mol Cell 2018, 72 (1), 178-186 e5.
12. Bar-Shir, A.; Alon, L.; Korrer, M. J.; Lim, H. S.; Yadav, N. N.; Kato, Y.; Pathak, A. P.; Bulte, J. W. M.; Gilad, A. A., Quantification and tracking of genetically engineered dendritic cells for studying immunotherapy. Magn Reson Med 2018, 79 (2), 1010-1019.
13. Bar-Shir, A.; Liu, G.; Liang, Y.; Yadav, N. N.; McMahon, M. T.; Walczak, P.; Nimmagadda, S.; Pomper, M. G.; Tallman, K. A.; Greenberg, M. M.; van Zijl, P. C.; Bulte, J. W.; Gilad, A. A., Transforming thymidine into a magnetic resonance imaging probe for monitoring gene expression. J Am Chem Soc 2013, 135 (4), 1617-24.
14. Bar-Shir, A.; Liu, G.; Greenberg, M. M.; Bulte, J. W.; Gilad, A. A., Synthesis of a probe for monitoring HSV1-tk reporter gene expression using chemical exchange saturation transfer MRI. Nat Protoc 2013, 8 (12), 2380-91.
Figure 1. Principle of the design and application of multicolor MRI reporters for in vivo imaging.
(a) Schematic illustration of dNK1 (Dm-dNK) and dNK2 (HSV1-TK) design using computation and rational mutagenesis, (b) followed by intracranial delivery of the designed reporters (as CHO-tumors or AAV-constructs) into mouse brain, (c) generating the multicolor mapping of transgene expression using CEST-MRI following intravenous delivery of the reporter probes mixture (pdC and 5-MDHT).Figure 2. Multicolor imaging of MRI-detectable synthetic deoxyribonucleosides.
(a) Chemical structure of MRI-detectable synthetic deoxyribonucleosides, pdC and 5-MDHT. (b) MTRasym plots of pdC and 5-MDHT solutions emphasizing the spectral resolution of their obtained CEST profiles. (c) Multicolor CEST maps of PBS, pdC, and 5-MDHT solutions obtained at ∆w=5 and 6 ppm.
Figure 3. In vitro and in vivo multicolour imaging of genetically engineered reporters.
(a) 1H-MRI, and CEST maps (∆w= 5 and 6 ppm) of CHODm-dNK_7C and CHOHSV1-TK_7B cell lysates after incubation with a mixture of pdC and 5-MDHT. (b-c) In vivo MRI imaging of transgene expression represented as pseudo-colored CEST maps of inoculated tumors (b) and AAV-infected brain (c) obtained at ∆w=5 ppm (magenta) and ∆w=6 ppm (green) overlayed on anatomical MRI.