This work introduces the first black blood 3D T2w MRI atlases of the normal fetal heart and congenital aortic arch anomalies. The atlases were generated from 87 subjects from normal, CoA, RAA and DAA cohorts and also include multi-label segmentations of the major cardiovascular structures. We further evaluated the feasibility of using deep learning for automated multi-label vessel segmentation in 3D T2w motion-corrected MRI images of the fetal heart.
We thank everyone who was involved in acquisition and examination of the datasets and all participating mothers.
This work was supported by the Rosetrees Trust [A2725], the Wellcome/EPSRC Centre for Medical Engineering at King’s College London [WT 203148/Z/16/Z], the Wellcome Trust and EPSRC IEH award [102431] for the iFIND project, the NIHR Clinical Research Facility (CRF) at Guy’s and St Thomas’ and by the National Institute for Health Research Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London.The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. We thank everyone who was involved in acquisition and examination of the datasets and all participating mothers.
[1] Roy, C. W., van Amerom, J. F. P., Marini, D., Seed, M., & Macgowan, C. K. (2019). Fetal Cardiac MRI: A Review of Technical Advancements. Topics in Magnetic Resonance Imaging: TMRI, 28(5), 235–244.
[2] Kuklisova-Murgasova, M., Quaghebeur, G., Rutherford, M. A., Hajnal, J. v., & Schnabel, J. A. (2012). Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Med Image Analysis, 16(8), 1550–1564.
[3] Lloyd, D. F. A., Pushparajah, K., Simpson, J. M., van Amerom, J. F., van Poppel, M. P. M., Schulz, A., Kainz, B., Deprez, M., Lohezic, M., Allsop, J., Mathur, S., Bellsham-Revell, H., Vigneswaran, T., Charakida, M., Miller, O., Zidere, V., Sharland, G., Rutherford, M., Hajnal, J., & Razavi, R. (2019). Three-dimensional visualisation of the fetal heart using prenatal MRI with motion-corrected slice-volume registration: a prospective, single-centre cohort study. The Lancet, 393(10181), 1619–1627.
[4] Lloyd, D. F. A., van Poppel, M. P. M., Pushparajah, K., Vigneswaran, T. v., Zidere, V., Steinweg, J., van Amerom, J. F. P., Roberts, T. A., Schulz, A., Charakida, M., Miller, O., Sharland, G., Rutherford, M., Hajnal, J. v., Simpson, J. M., & Razavi, R. (2021). Analysis of 3-Dimensional Arch Anatomy, Vascular Flow, and Postnatal Outcome in Cases of Suspected Coarctation of the Aorta Using Fetal Cardiac Magnetic Resonance Imaging. Circulation: Cardiovascular Imaging, 14(7), 583–593.
[5] “iFIND Project.” [Online]. Available: http://www.ifindproject.com/. [Accessed: 01-Nov-2021].
[6] Uus, A., Zhang, T., Jackson, L. H., Roberts, T. A., Rutherford, M. A., Hajnal, J. v, & Deprez, M. (2020). Deformable Slice-to-Volume Registration for Motion Correction of Fetal Body and Placenta MRI. IEEE Transactions on Medical Imaging, 39(9), 2750–2759.
[7] Uus, A., Grigorescu, I., van Poppel, M. P. M., Steinweg, J. K., Roberts, T. A., Rutherford, M. A., Hajnal, J. V., Lloyd, D. F. A., Pushparajah, K., & Deprez, M. (2021). Automated 3D reconstruction of the fetal thorax in the standard atlas space from motion-corrupted MRI stacks for 21-36 weeks GA range. BioRxiv, 2021.09.22.461335.
[8] “SVRTK: MIRTK based SVR package for fetal MRI.” [Online]. Available: https://github.com/SVRTK/. [Accessed: 01-Nov-2021].
[9] “MIRTK package.” [Online]. Available: https://github.com/BioMedIA/MIRTK/. [Accessed: 01-Nov-2021].
[10] Schuh, A., Murgasova, M., Makropoulos, A., Ledig, C., Counsell, S. J., Hajnal, J. v, Aljabar, P., & Rueckert, D. (2014). Construction of a 4D Brain Atlas and Growth Model using Diffeomorphic Registration. STIA MICCAI 2014.
[11] “ITK-SNAP tool.” [Online]. Available: http://www.itksnap.org/. [Accessed: 01-Nov-2021].
[12] “SVRTK fetal MRI data repository.” [Online]. Available: https://gin.g-node.org/SVRTK/. [Accessed: 01-Nov-2021].
[13] “MONAI framework.” [Online]. Available: https://github.com/Project-MONAI/MONAI/. [Accessed: 01-Nov-2021].
[14] Hatamizadeh, A., Tang, Y., Nath, V., Yang, D., Myronenko, A., Landman, B., Roth, H., & Xu, D. (2021). UNETR: Transformers for 3D Medical Image Segmentation. arXiv:2103.10504.
[15] van Poppel, M. P. M., Pushparajah, K., Lloyd, D. F. A., Razavi, R., Speggiorin, S., Nyman, A., Simpson, J. M., Zidere, V., & Vigneswaran, T. v. (2020). Insights from fetal cardiac magnetic resonance imaging in double aortic arch. Ultrasound in Obstetrics & Gynecology, 56(4), 636–639.