The main limitation of current axon diameter mapping techniques is that the diffusion MRI (dMRI) signals from axons smaller than 2.0 μm are practically undistinguished from each other, even for the most advanced human scanners. Consequently, there is a resolution limit for the in vivo estimation of axon diameters from dMRI data. Therefore, it would be desirable to find another source of MRI contrast sensitive to the axonal calibre. This proof-of-concept study used a surface-based relaxation model to investigate whether the intra-axonal T2 estimated in a human brain is related to the inner axon radius measured from histological data.
1. Goldstein, S. S. & Rall, W. Changes of Action Potential Shape and Velocity for Changing Core Conductor Geometry. Biophys. J. 14, 731–757 (1974).
2. Costa, A. R., Pinto-Costa, R., Sousa, S. C. & Sousa, M. M. The Regulation of Axon Diameter: From Axonal Circumferential Contractility to Activity-Dependent Axon Swelling. Front. Mol. Neurosci. 0, 319 (2018).
3. Drakesmith, M. et al. Estimating axon conduction velocity in vivo from microstructural MRI. Neuroimage 203, 116186 (2019).
4. Huang, S. Y. et al. Corpus callosum axon diameter relates to cognitive impairment in multiple sclerosis. Ann. Clin. Transl. Neurol. 6, 882 (2019).
5. Jones, D. K. et al. Microstructural imaging of the human brain with a ‘super-scanner’: 10 key advantages of ultra-strong gradients for diffusion MRI. Neuroimage (2018). doi:10.1016/j.neuroimage.2018.05.047
6. De Santis, S., Jones, D. K. & Roebroeck, A. Including diffusion time dependence in the extra-axonal space improves in vivo estimates of axonal diameter and density in human white matter. Neuroimage 130, 91–103 (2016).
7. Veraart, J. et al. Noninvasive quantification of axon radii using diffusion MRI. doi:10.7554/eLife.49855
8. Duval, T. et al. In vivo mapping of human spinal cord microstructure at 300 mT/m. Neuroimage 118, 494–507 (2015).
9. Dyrby, T. B., Søgaard, L. V., Hall, M. G., Ptito, M. & Alexander, D. C. Contrast and stability of the axon diameter index from microstructure imaging with diffusion MRI. Magn. Reson. Med. 70, 711–721 (2013).
10. Assaf, Y. et al. AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn. Reson. Med. 59, 1347–1354 (2008).
11. Alexander, D. C. A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features. Magn Reson Med 60, 439–448 (2008).
12. Assaf, Y. & Basser, P. J. Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. Neuroimage 27, 48–58 (2005).
13. Assaf, Y., Freidlin, R. Z., Rohde, G. K. & Basser, P. J. New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn. Reson. Med. 52, 965–978 (2004).
14. Barakovic, M. et al. Bundle-Specific Axon Diameter Index as a New Contrast to Differentiate White Matter Tracts. Front. Neurosci. 0, 687 (2021).
15. Nilsson, M. et al. Resolution limit of cylinder diameter estimation by diffusion MRI: The impact of gradient waveform and orientation dispersion. NMR Biomed. 30, (2017).
16. Edgar, J. M. & Griffiths, I. R. White Matter Structure: A Microscopist’s View. Diffus. MRI From Quant. Meas. to vivo Neuroanat. Second Ed. 127–153 (2014). doi:10.1016/B978-0-12-396460-1.00007-X
17. Alexander, D. C. et al. Orientationally invariant indices of axon diameter and density from diffusion MRI. Neuroimage 52, 1374–1389 (2010).
18. Brownstein, K. R. & Tarr, C. E. Spin-lattice relaxation in a system governed by diffusion. J. Magn. Reson. 26, 17–24 (1977).
19. Müller-Petke, M., Dlugosch, R., Lehmann-Horn, J. & Ronczka, M. Nuclear magnetic resonance average pore-size estimations outside the fast-diffusion regime. GEOPHYSICS (2015). doi:10.1190/geo2014-0167.1
20. Sørland, G. H., Djurhuus, K., Widerøe, H. C., Lien, J. R. & Skauge, A. Absolute pore size distribution from NMR. Diffus. Fundam. (2007).
21. Mohnke, O. & Hughes, B. Jointly deriving NMR surface relaxivity and pore size distributions by NMR relaxation experiments on partially desaturated rocks. Water Resour. Res. 50, 5309–5321 (2014).
22. Slijkerman, W. F. J. & Hofman, J. P. Determination of surface relaxivity from NMR diffusion measurements. in Magnetic Resonance Imaging (1998). doi:10.1016/S0730-725X(98)00058-7
23. Brownstein, K. R. & Tarr, C. E. Importance of classical diffusion in NMR studies of water in biological cells. Phys. Rev. A 19, 2446–2453 (1979).
24. McKinnon, E. T. & Jensen, J. H. Measuring intra-axonal T2 in white matter with direction-averaged diffusion MRI. Magn. Reson. Med. 81, 2985–2994 (2019).
25. Barakovic, M. et al. Resolving bundle-specific intra-axonal T2 values within a voxel using diffusion-relaxation tract-based estimation. Neuroimage 227, 117617 (2021).
26. Caminiti, R., Ghaziri, H., Galuske, R., Hof, P. R. & Innocenti, G. M. Evolution amplified processing with temporally dispersed slow neuronal connectivity in primates. Proc. Natl. Acad. Sci. U. S. A. 106, 19551 (2009).
27. Chang, D. C. & Hazlewood, C. F. Nuclear magnetic resonance study of squid giant axon. Biochim. Biophys. Acta - Gen. Subj. 630, 131–136 (1980).
28. Tax, C. M. W. et al. Measuring compartmental T2-orientational dependence in human brain white matter using a tiltable RF coil and diffusion-T2 correlation MRI. Neuroimage 236, 117967 (2021).
29. Kaden, E. & Alexander, D. C. Can T2-spectroscopy resolve submicrometer axon diameters? Inf. Process. Med. Imaging 23, 607–618 (2013).
30. Zimmerman, J. R. & Brittin, W. E. Nuclear magnetic resonance studies in multiple phase systems: Lifetime of a water molecule in an adsorbing phase on silica gel. J. Phys. Chem. 61, 1328–1333 (1957).
31. Le Bihan, D. The ‘wet mind’: water and functional neuroimaging. Phys Med Biol 52, R57-90 (2007).
32. RM, L., CM, C. & AJ, S. Elemental composition and water content of myelinated axons and glial cells in rat central nervous system. Brain Res. 549, 253–259 (1991).