We investigate the use of generalized anisotropy profiles (GAPs) for delineating boundaries between subcortical gray and white matter in vivo. Replicating results from a previous ex vivo study, we show that GAPs, which are computed from the diffusion propagator, provide more informative contrasts than T1- and T2-weighted images or conventional diffusion metrics. An undersampled Cartesian-grid sampling of q-space can be used to obtain these profiles with a reasonable scan time. Thus, GAPs show promise as a multi-channel contrast that could be used in the future to improve structural segmentation.
[1] Zhang, F., Breger, A., Cho, K.I.K., Ning, L., Westin, C.F., O’Donnell, L.J. and Pasternak, O., 2021. Deep learning based segmentation of brain tissue from diffusion MRI. NeuroImage, 233, p.117934.
[2] Cheng, H., Newman, S., Afzali, M., Fadnavis, S.S. and Garyfallidis, E., 2020. Segmentation of the brain using direction-averaged signal of DWI images. Magnetic resonance imaging, 69, pp.1-7.
[3] Iglesias, J.E., Van Leemput, K., Golland, P. and Yendiki, A., 2019, June. Joint inference on structural and diffusion MRI for sequence-adaptive Bayesian segmentation of thalamic nuclei with probabilistic atlases. In International Conference on Information Processing in Medical Imaging (pp. 767-779). Springer, Cham.
[4] Ning, Lipeng, Carl-Fredrik Westin, and Yogesh Rathi. "Estimating diffusion propagator and its moments using directional radial basis functions." IEEE transactions on medical imaging 34.10 (2015): 2058-2078.
[5] R. Jones, Q. Tian, C. Maffei, J. Augustinack, A. Nummenmaa, S. Huang, and A. Yendiki. 2021. “Generalized anisotropy profiles distinguish cortical and subcortical structures in ex vivo diffusion MRI.” In ISMRM.
[6] Jones, R., Maffei, C., Augustinack, J., Fischl, B., Wang, H., Bilgic, B. and Yendiki, A., 2021. High-fidelity approximation of grid-and shell-based sampling schemes from undersampled DSI using compressed sensing: Post mortem validation. NeuroImage, 244, p.118621.
[7] Bilgic, B., Chatnuntawech, I., Setsompop, K., Cauley, S.F., Yendiki, A., Wald, L.L. and Adalsteinsson, E., 2013. Fast dictionary-based reconstruction for diffusion spectrum imaging. IEEE transactions on medical imaging, 32(11), pp.2022-2033.
[8] Setsompop, K., Kimmlingen, R., Eberlein, E., Witzel, T., Cohen-Adad, J., McNab, J.A., Keil, B., Tisdall, M.D., Hoecht, P., Dietz, P. and Cauley, S.F., 2013. Pushing the limits of in vivo diffusion MRI for the Human Connectome Project. Neuroimage, 80, pp.220-233.
[9] Keil, B., Blau, J.N., Biber, S., Hoecht, P., Tountcheva, V., Setsompop, K., Triantafyllou, C. and Wald, L.L., 2013. A 64‐channel 3T array coil for accelerated brain MRI. Magnetic resonance in medicine, 70(1), pp.248-258.
[10] Wedeen, V.J., Wang, R.P., Schmahmann, J.D., Benner, T., Tseng, W.Y.I., Dai, G., Pandya, D.N., Hagmann, P., D'Arceuil, H. and de Crespigny, A.J., 2008. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. Neuroimage, 41(4), pp.1267-1277.
[11] Veraart, J., Novikov, D.S., Christiaens, D., Ades-Aron, B., Sijbers, J. and Fieremans, E., 2016. Denoising of diffusion MRI using random matrix theory. Neuroimage, 142, pp.394-406.
[12] Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E. and Niazy, R.K., 2004. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23, pp.S208-S219.
[13] Andersson, J.L. and Sotiropoulos, S.N., 2016. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage, 125, pp.1063-1078.
[14] Tian, Q., Yang, G., Leuze, C., Rokem, A., Edlow, B.L. and McNab, J.A., 2019. Generalized diffusion spectrum magnetic resonance imaging (GDSI) for model-free reconstruction of the ensemble average propagator. Neuroimage, 189, pp.497-515.
[15] Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., Van Der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S. and Montillo, A., 2002. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), pp.341-355.
[16] Greve, D.N. and Fischl, B., 2009. Accurate and robust brain image alignment using boundary-based registration. Neuroimage, 48(1), pp.63-72.