The relatively low resolution of conventional in-vivo human dMRI prevents the reconstruction of small axonal bundles (diameter < 3mm). Here we show that diencephalic connections, which are inaccessible at macroscopic resolution (1.5mm), can be reconstructed with unprecedented accuracy at mesoscopic resolution (760μm). We investigate the minimum number of directions needed to achieve this with a state-of-the-art, multi-slab dMRI sequence. We find that a long, multi-session acquisition is necessary. We aim to develop a protocol for manual annotation of these bundles in a small number of high-quality datasets, and thus produce a training set for automated reconstruction in lower-quality dMRI data.
1.Maffei C., Sarubbo S., Jovicich J. Diffusion-based tractography atlas of the human acoustic radiation. Sci. Rep. 2019;9.
2. Mcnab J.A., Edlow B.L., Witzel T., Huang S.Y., Bhat H., Heberlein K., Feiweier T., Liu K., Keil B., Cohen-Adad J., Tisdall M.D., Folkerth R.D., Kinney H.C., Wald L.L.. The Human Connectome Project and beyond: Initial applications of 300 mT/m gradients. Neuroimage. 2013;80:234-245.
3.Fakhoury M. The habenula in psychiatric disorders: More than three decades of translational investigation. Neurosci Biobehav Rev. 2017;83:721-735.
4.Gallay M.N., Jeanmonod D., Liu J., Morel A.Human pallidothalamic and cerebellothalamic tracts: anatomical basis for functional stereotactic neurosurgery. Brain structure & function. 2018; 212(6):443–463.
5. Oishi K, Mori S, Troncoso JC, Lenz FA. Mapping tracts in the human subthalamic area by 11.7T ex vivo diffusion tensor imaging. Brain Struct Funct. 2020;225(4):1293-1312.
6. Keil, B. et al. A 64‐channel 3T array coil for accelerated brain MRI. Magn. Reson. Med. 2013; 70, 248–258.
7.Setsompop, K. et al. High‐resolution in vivo diffusion imaging of the human brain with generalized slice dithered enhanced resolution: Simultaneous multislice (gSlider-SMS). Magn. Reson. Med. 2018; 79, 141–151.
8.Wang, F. et al. Motion‐robust sub‐millimeter isotropic diffusion imaging through motion corrected generalized slice dithered enhanced resolution (MC-gSlider) acquisition. Magn. Reson. Med. 2018; 80, 1891–1906.
9.Wang F., Dong Z., Tian Q. et al. In vivo human whole-brain Connectom diffusion MRI dataset at 760 µm isotropic resolution. Sci Data. 2021; 8, 122.
10. C. Maffei, C. Lee, M. Planich, M. Ramprasad, N. Ravi, D. Trainor, Z. Urban, M. Kim, R.J. Jones, A. Henin, S.G. Hofmann, D.A. Pizzagalli, R.P. Auerbach, J.D.E. Gabrieli, S. Whitfield-Gabrieli, D.N. Greve, S.N. Haber, A. Yendiki. Using diffusion MRI data acquired with ultra-high gradients to improve tractography in routine-quality data. bioRxiv 2021.06.28.450265
11.Yendiki A., Panneck P., Srinivasan P., Stevens A., Zöllei L., Augustinack J., Wang R., et al. Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Frontiers in Neuroinformatics. 2011; 5: 23.
12.Wang, F. et al. Data from: In vivo human whole-brain Connectom diffusion MRI dataset at 760 μm isotropic resolution (PART I). Dryad https://doi.org/10.5061/dryad.nzs7h44q2 (2021).
13. Wang, F. et al. Data from: In vivo human whole-brain Connectom diffusion MRI dataset at 760 μm isotropic resolution (PART II). Dryad https://doi.org/10.5061/dryad.rjdfn2z8g (2021).
14.Jeurissen B., Tournier J. D., Dhollander T., Connelly A., Sijbers, J. Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. NeuroImage. 2014; 103, 411-426.
15.Tournier J. D., Smith R., Raffelt D., Tabbara R., Dhollander T., Pietsch, M., [...], Connelly A. MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. NeuroImage. 2019; 202, 116137.
16.Duvernoy's Atlas of the Human Brain Stem and Cerebellum. AJNR Am J Neuroradiol. 2009;30(5):e75.
17.Roman E., Weininger J., Lim B., et al. Untangling the dorsal diencephalic conduction system: a review of structure and function of the stria medullaris, habenula and fasciculus retroflexus. Brain Struct Funct. 2020;225(5):1437-1458.
18. Li N., Baldermann J.C., Kibleur A. et al. A unified connectomic target for deep brain stimulation in obsessive-compulsive disorder. Nat Commun. 2020; 11, 3364 ().
19. Tian Q., Wintermark M., Jeffrey E. W., et al. Diffusion MRI tractography for improved transcranial MRI-guided focused ultrasound thalamotomy targeting for essential tremor. Neuroimage Clin. 2018;19:572-580.
Fig 1. Effect of spatial resolution. Tractography reconstructions of the right-hemisphere diencephalic white matter connections for one of the MGH-USC HCP subjects (MGH_1006) acquired at 1.5x1.5x1.5 mm spatial resolution (left), and for the submillimeter data acquired at 0.76x0.76x0.76 mm (right). The mammillo-thalamic tract and the fasciculus retroflexus are only visible at 0.76x0.76x0.76 mm.
Fig 3. Effect of angular resolution. Tractography of the right mammilllo-thalamic tract (MTh), mammillo-tegmental tract (MTe), stria medullaris (SM), and fasciculus retroflexus (FR) from the full dMRI dataset and each of the sub-sampled datasets. Number of gradient directions and approximate time required for their acquisition are also shown (top row).
Fig 4. Quantitative evaluation. A) Spatial overlap, measured by the Dice coefficient, between tracts reconstructed using the full dataset and those reconstructed using each one of the sub-sampled datasets. B) Volume of tracts reconstructed from the full dataset and each of the sub-sampled datasets.
Fig 5. Comparison of fiber orientation distribution functions (fODFs). A) Sagittal view showing a cross-section of the right stria medullaris (SM) and fornix (FX), along with the reconstructed fODFs for that slice. The location of the magnification box is shown in B. C-G) Reconstructed fODFs for the full dataset (C) and each of the sub-sampled datasets (D-G). Arrows point to SM fODFs getting noisier as the number of gradient directions decreases.