Perspectives on classification of 2D and 3D medical images
Krzysztof J. Geras1
1New York University, New York, NY, United States

Synopsis

Although deep neural networks have already achieved a good performance in many medical image analysis tasks, their clinical implementation is slower than many anticipated a few years ago. One of the critical issues that remains outstanding is the lack of explainability of the commonly used network architectures imported from computer vision. In my talk, I will explain how we created a new deep neural network architecture, tailored to medical image analysis, in which making a prediction is inseparable from explaining it. I will demonstrate how we used this architecture to build strong networks for breast cancer screening exam interpretation.

Slide #1
Slide #2
Slide #3
Slide #4
Slide #5
Slide #6
Slide #7
Slide #8
Slide #9
Slide #10
Slide #11
Slide #12
Slide #13
Slide #14
Slide #15
Slide #16
Slide #17
Slide #18
Slide #19
Slide #20
Slide #21
Slide #22
Slide #23
Slide #24
Slide #25
Slide #26
Slide #27
Slide #28
Proc. Intl. Soc. Mag. Reson. Med. 29 (2021)