Advanced Reconstruction Methods for Relaxation Parameter Mapping
Alessandro Sbrizzi1
1UMC Utrecht, Utrecht, Netherlands

Synopsis

Classic relaxation parameter mapping sequences such as inversion-recovery (for T1) or multiple-echo spin-echo (for T2) are too long for clinical applications. By better exploiting structure and relationships (priors) in the spatial (or frequency) domain and in the sequence parameter domain it is possible to under-sample the acquisition thereby accelerating the scan times. More advanced modelling strategies (e.g. time-domain) leads to further acceleration. However, the reconstruction algorithms gets more complex and computationally demanding. Deep learning strategies could overcome these drawbacks.

Syllabus

Classic relaxation parameter mapping sequences such as inversion-recovery (for T1) or multiple-echo spin-echo (for T2) are too long for clinical applications. By better exploiting structure and relationships (priors) in the spatial (or frequency) domain and in the sequence parameter domain it is possible to under-sample the acquisition thereby accelerating the scan times. More advanced modelling strategies (e.g. time-domain) leads to further acceleration. However, the reconstruction algorithms gets more complex and computationally demanding. Deep learning strategies could overcome these drawbacks.

Acknowledgements

No acknowledgement found.

References

  • Doneva, Mariya, et al. MRM 64.4 (2010): 1114-1120.
  • Velikina, Julia V.,et al. MRM 70.5 (2013): 1263-1273.
  • Lingala, Sajan Goud, et al. IEEE TMI 30.5 (2011): 1042-1054
  • Huang, Chuan, et al. MRM 67.5 (2012): 1355-1366.
  • Zhao, Bo, et al. MRM 74.2 (2015): 489-498
  • Zhang, Tao, et al MRM 73.2 (2015): 655-661.
  • Lee, Dongwook, et al. MRM 76.6 (2016): 1848-1864.
  • Block, Kai Tobias, et al IEEE TMI28.11 (2009): 1759-1769.
  • Sumpf, Tilman J., et al. JMRI 34.2 (2011): 420-428.
  • Wang, Xiaoqing, et al. MRM 79.2 (2018): 730-740.
  • Alessandro Sbrizzi et al, MRI 46 (2018): 56-63.
  • Oscar van der Heide et al., NMR Biomed 33.4 (2020): e4251.
  • Oscar van der Heide et al., IEEE TMI 39.11 (2020): 3737-3748.
  • Hongyan (Hanna) Liu et al., ISMRM 2020, p3477.
  • Oscar van der Heide et al, ISMRM 2021, p3063
  • Miha Fuderer et al, ISMRM 2021, p305
  • Feng, Li, et al NMR in Biomed (2020): e4416.
  • Cai, Congbo, et al. MRM 80.5 (2018): 2202-2214.
  • Liu, Fang et al. MRM 82.1 (2019): 174-188

Proc. Intl. Soc. Mag. Reson. Med. 29 (2021)