The relation between the BOLD signal and brain physiology is complex. Among the physiological determinants of BOLD, the cerebral blood volume (CBV) and the cerebral blood flow (CBF) appear of interest: they may be mapped using MRI. In fact, the first functional MRI paper ever published was based on the mapping of CBV changes, soon followed by a CBF-based fMRI paper. In this course, we will review the main fMRI methods based on blood volume and blood flow.
1. Krainik A, Villien M, Troprès I, Attyé A, Lamalle L, Bouvier J, et al. Functional imaging of cerebral perfusion. Diagn Interv Imaging. 2013 Dec;94(12):1259–78.
2. Barbier EL, Lamalle L, Décorps M. Methodology of brain perfusion imaging. J Magn Reson Imaging. 2001;13(4).
3. Belliveau J, Kennedy D, McKinstry R, Buchbinder B, Weisskoff R, Cohen M, et al. Functional mapping of the human visual cortex by magnetic resonance imaging. Science. 1991 Nov 1;254(5032):716–9.
4. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci. 1992 Jun 15;89(12):5675–9.
5. Wong EC, Buxton RB, Frank LR. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed. 1997;10:13.
6. Alsop DC, Detre JA, Golay X, Gu M, Hendrikse J, Hernandez-Garcia L, et al. Recommended Implementation of Arterial Spin Labeled Perfusion MRI for Clinical Applications: A Consensus of the ISMRM Perfusion Study Group and the European Consortium for ASL in Dementia, Magnetic Resonance in Medicine, 2015;73:102-116.
7. Wong EC, Luh W-M, Liu TT. Turbo ASL: Arterial Spin Labeling With Higher SNR and Temporal Resolution. Magnetic Resonance in Medicine, 2000;44:511–5.
8. Mumford JA, Hernandez-Garcia L, Lee GR, Nichols TE. Estimation efficiency and statistical power in arterial spin labeling fMRI. NeuroImage. 2006 Oct;33(1):103–14.
9. Barbier EL, Silva AC, Kim S-G, Koretsky AP. Perfusion imaging using dynamic arterial spin labeling (DASL). Magn Reson Med. 2001;45(6).
10. Meng Y, Wang P, Kim S-G. Simultaneous measurement of cerebral blood flow and transit time with turbo dynamic arterial spin labeling (Turbo-DASL): Application to functional studies. Magn Reson Med. 2012 Sep;68(3):762–71.
11. Cohen AD, Nencka AS, Wang Y. Multiband multi-echo simultaneous ASL/BOLD for task-induced functional MRI. Pillai J, editor. PLOS ONE. 2018 Feb 1;13(2):e0190427.
12. Cohen AD, Nencka AS, Lebel RM, Wang Y. Multiband multi-echo imaging of simultaneous oxygenation and flow timeseries for resting state connectivity. PLOS ONE. 2017 Mar 2;12(3):e0169253.
13. Aguirre GK, Detre JA, Zarahn E, Alsop DC. Experimental Design and the Relative Sensitivity of BOLD and Perfusion fMRI. NeuroImage. 2002 Mar;15(3):488–500.
14. Liu TT, Wong EC. A signal processing model for arterial spin labeling functional MRI. NeuroImage. 2005 Jan;24(1):207–15.
15. Warnock G, Özbay PS, Kuhn FP, Nanz D, Buck A, Boss A, et al. Reduction of BOLD interference in pseudo-continuous arterial spin labeling: towards quantitative fMRI. J Cereb Blood Flow Metab. 2018 May;38(5):847–56.
16. Glover GH, Li T-Q, Ress D. Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magnetic Resonance in Medicine, 2000;44:162-167.
17. Chen JJ, Jann K, Wang DJJ. Characterizing Resting-State Brain Function Using Arterial Spin Labeling. Brain Connect. 2015 Nov;5(9):527–42.
18. Wang J, Aguirre GK, Kimberg DY, Roc AC, Li L, Detre JA. Arterial spin labeling perfusion fMRI with very low task frequency. Magn Reson Med. 2003 May;49(5):796–802.
19. Stewart SB, Koller JM, Campbell MC, Black KJ. Arterial spin labeling versus BOLD in direct challenge and drug-task interaction pharmacological fMRI. PeerJ. 2014 Dec 11;2:e687.
20. Stefanovic B, Warnking JM, Pike GB. Hemodynamic and metabolic responses to neuronal inhibition. NeuroImage. 2004 Jun;22(2):771–8.
21. Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB. Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex. Proc Natl Acad Sci. 1999;96(16):9403–8.
22. Woolrich MW, Chiarelli P, Gallichan D, Perthen J, Liu TT. Bayesian inference of hemodynamic changes in functional arterial spin labeling data. Magn Reson Med. 2006;56(4):891–906.
23. Schmithorst VJ, Hernandez-Garcia L, Vannest J, Rajagopal A, Lee G, Holland SK. Optimized simultaneous ASL and BOLD functional imaging of the whole brain: Whole-Brain ASL/BOLD Functional Imaging. J Magn Reson Imaging. 2014;39(5):1104–17.
24. Fernández-Seara MA, Rodgers ZB, Englund EK, Wehrli FW. Calibrated bold fMRI with an optimized ASL-BOLD dual-acquisition sequence. NeuroImage. 2016;142:474–82.
25. Tong Y, Jezzard P, Okell TW, Clarke WT. Improving PCASL at ultra‐high field using a VERSE‐guided parallel transmission strategy. Magn Reson Med. 2020;84(2):777–86.
26. Ivanov D, Gardumi A, Haast RAM, Pfeuffer J, Poser BA, Uludağ K. Comparison of 3 T and 7 T ASL techniques for concurrent functional perfusion and BOLD studies. NeuroImage. 2017;156:363–76.
27. Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM. Mr contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med. 1995;34(4):555–66.
28. Troprès I, Pannetier N, Grand S, Lemasson B, Moisan A, Péoc’h M, et al. Imaging the microvessel caliber and density: Principles and applications of microvascular MRI. Magn Reson Med. 2015;73(1).
29. Mandeville JB, Marota JJA. Vascular Filters of Functional MRI: Spatial Localization Using BOLD and CBV Contrast. Magnetic Resonance in Medicine, 1999;42:591-598.
30. Mandeville JB. IRON fMRI measurements of CBV and implications for BOLD signal. NeuroImage. 2012 Aug;62(2):1000–8.
31. Christen T, Ni W, Qiu D, Schmiedeskamp H, Bammer R, Moseley M, et al. High-resolution cerebral blood volume imaging in humans using the blood pool contrast agent ferumoxytol: High Resolution CBV Maps in Humans Using USPIOs. Magn Reson Med. 2013;70(3):705–10.
32. Kennan RP, Scanley BE, Innis RB, Gore JC. Physiological basis for BOLD MR signal changes due to neuronal stimulation: Separation of blood volume and magnetic susceptibility effects. Magn Reson Med. 1998;40(6):840–6.
33. Mandeville JB, Marota JJA, Kosofsky BE, Keltner JR, Weissleder R, Rosen BR, et al. Dynamic functional imaging of relative cerebral blood volume during rat forepaw stimulation. Magn Reson Med. 1998;39(4):615–24.
34. Leite FP, Tsao D, Vanduffel W, Fize D, Sasaki Y, Wald LL, et al. Repeated fMRI Using Iron Oxide Contrast Agent in Awake, Behaving Macaques at 3 Tesla. NeuroImage. 2002;16(2):283–94.
35. Provenzano R, Schiller B, Rao M, Coyne D, Brenner L, Pereira BJG. Ferumoxytol as an Intravenous Iron Replacement Therapy in Hemodialysis Patients. Clin J Am Soc Nephrol. 2009;4(2):386–93.
36. D’Arceuil H, Coimbra A, Triano P, Dougherty M, Mello J, Moseley M, et al. Ferumoxytol enhanced resting state fMRI and relative cerebral blood volume mapping in normal human brain. NeuroImage. 2013;83:200–9.
37. Qiu D, Zaharchuk G, Christen T, Ni WW, Moseley ME. Contrast-enhanced functional blood volume imaging (CE-fBVI): Enhanced sensitivity for brain activation in humans using the ultrasmall superparamagnetic iron oxide agent ferumoxytol. NeuroImage. 2012;62(3):1726–31.
38. Baumgartner R, Cho W, Coimbra A, Chen C, Wang Z, Struyk A, et al. Evaluation of an fMRI USPIO-based assay in healthy human volunteers: fMRI USPIO-Based Assay in Healthy Human Volunteers. J Magn Reson Imaging. 2017;46(1):124–33.
39. Goense J, Bohraus Y, Logothetis NK. fMRI at High Spatial Resolution: Implications for BOLD-Models. Front Comput Neurosci [Internet]. 2016 Jun 28.
40. Zhao F, Williams M, Bowlby M, Houghton A, Hargreaves R, Evelhoch J, et al. Qualification of fMRI as a biomarker for pain in anesthetized rats by comparison with behavioral response in conscious rats. NeuroImage. 2014;84:724–32.
41. Zhao F, Williams M, Welsh DC, Meng X, Ritter A, Abbadie C, et al. fMRI investigation of the effect of local and systemic lidocaine on noxious electrical stimulation-induced activation in spinal cord. Pain. 2009;145(1):110–9.
42. Mandeville JB, Choi J-K, Jarraya B, Rosen BR, Jenkins BG, Vanduffel W. fMRI of Cocaine Self-Administration in Macaques Reveals Functional Inhibition of Basal Ganglia. Neuropsychopharmacology. 2011;36(6):1187–98.
43. Gozzi A, Schwarz A, Reese T, Bertani S, Crestan V, Bifone A. Region-Specific Effects of Nicotine on Brain Activity: A Pharmacological MRI Study in the Drug-Naïve Rat. Neuropsychopharmacology, 2006;31:1690-1703.
44. Lu H, Golay X, Pekar JJ, van Zijl PCM. Functional magnetic resonance imaging based on changes in vascular space occupancy. Magn Reson Med. 2003;50(2):263–74.
45. Scouten A, Constable RT. VASO-based calculations of CBV change: Accounting for the dynamic CSF volume. Magn Reson Med. 2008;59(2):308–15.
46. Donahue MJ, Lu H, Jones CK, Edden RAE, Pekar JJ, van Zijl PCM. Theoretical and experimental investigation of the VASO contrast mechanism. Magn Reson Med. 2006;56(6):1261–73.
47. Lu H, van Zijl PCM, Hendrikse J, Golay X. Multiple acquisitions with global inversion cycling (MAGIC): A multislice technique for vascular-space-occupancy dependent fMRI. Magn Reson Med. 2004;51(1):9–15.
48. Scouten A, Constable RT. Applications and limitations of whole-brain MAGIC VASO functional imaging. Magn Reson Med. 2007;58(2):306–15.
49. Poser BA, Norris DG. 3D single-shot VASO using a maxwell gradient compensated GRASE sequence. Magn Reson Med. 2009;62(1):255–62.
50. Hua J, Donahue MJ, Zhao JM, Grgac K, Huang AJ, Zhou J, et al. Magnetization transfer enhanced vascular-space-occupancy (MT-VASO) functional MRI. Magn Reson Med. 2009;61(4):944–51.
51. Hua J, Qin Q, Donahue MJ, Zhou J, Pekar JJ, van Zijl PCM. Inflow-based vascular-space-occupancy (iVASO) MRI: Inflow-VASO. Magn Reson Med. 2011;66(1):40–56.
52. Lu H, van Zijl PCM. A review of the development of Vascular-Space-Occupancy (VASO) fMRI. NeuroImage. 2012;62(2):736–42.
53. Jin T, Kim S-G. Improved cortical-layer specificity of vascular space occupancy fMRI with slab inversion relative to spin-echo BOLD at 9.4 T. NeuroImage. 2008;40(1):59–67.
54. Huber L, Ivanov D, Krieger SN, Streicher MN, Mildner T, Poser BA, et al. Slab-selective, BOLD-corrected VASO at 7 Tesla provides measures of cerebral blood volume reactivity with high signal-to-noise ratio: SS-SI-VASO Measures Changes of CBV in Brain. Magn Reson Med. 2014;72(1):137–48.
55. Huber L, Finn ES, Handwerker DA, Bönstrup M, Glen DR, Kashyap S, et al. Sub-millimeter fMRI reveals multiple topographical digit representations that form action maps in human motor cortex. NeuroImage. 2020;208:116463.
56. Huber L, Handwerker DA, Jangraw DC, Chen G, Hall A, Stüber C, et al. High-Resolution CBV-fMRI Allows Mapping of Laminar Activity and Connectivity of Cortical Input and Output in Human M1. Neuron. 2017;96(6):1253-1263.e7.
57. Chai Y, Li L, Huber L, Poser BA, Bandettini PA. Integrated VASO and perfusion contrast: A new tool for laminar functional MRI. NeuroImage. 2020;207:116358.
58. Koush Y, de Graaf RA, Jiang L, Rothman DL, Hyder F. Functional MRS with J-edited lactate in human motor cortex at 4 T. NeuroImage. 2019;184:101–8.
59. Prichard J, Rothman D, Novotny E, Petroff O, Kuwabara T, Avison M, et al. Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci. 1991;88(13):5829–31.
60. Tkáć I, Gruetter R. Methodology of1H NMR spectroscopy of the human brain at very high magnetic fields. Appl Magn Reson. 2005;29(1):139–57.
61. Chen W, Novotny EJ, Zhu XH, Rothman DL, Shulman RG. Localized 1H NMR measurement of glucose consumption in the human brain during visual stimulation. Proc Natl Acad Sci. 1993;90(21):9896–900.
62. Lin Y-J, Koretsky AP. Manganese ion enhances T1-weighted MRI during brain activation: An approach to direct imaging of brain function. Magn Reson Med. 1997;38(3):378–88.
63. Pautler RG, Koretsky AP. Tracing Odor-Induced Activation in the Olfactory Bulbs of Mice Using Manganese-Enhanced Magnetic Resonance Imaging. NeuroImage. 2002;16(2):441–8.
64. Radecki G, Nargeot R, Jelescu IO, Le Bihan D, Ciobanu L. Functional magnetic resonance microscopy at single-cell resolution in Aplysia californica. Proc Natl Acad Sci. 2014;111(23):8667–72.
65. Le Bihan D, Urayama S -i., Aso T, Hanakawa T, Fukuyama H. Direct and fast detection of neuronal activation in the human brain with diffusion MRI. Proc Natl Acad Sci. 2006;103(21):8263–8.
66. Roussel T, Frydman L, Le Bihan D, Ciobanu L. Brain sugar consumption during neuronal activation detected by CEST functional MRI at ultra-high magnetic fields. Sci Rep. 2019;9(1):4423.
67. Yang Y, Gu H, Stein EA. Simultaneous MRI acquisition of blood volume, blood flow, and blood oxygenation information during brain activation. Magn Reson Med. 2004;52(6):1407–17.
68. Kennerley AJ, Mayhew JE, Redgrave P, Berwick J. Vascular Origins of BOLD and CBV fMRI Signals: Statistical Mapping and Histological Sections Compared. Open Neuroimaging J. 2010;4:1–8.
69. Zhang K, Huang D, Shah NJ. Comparison of Resting-State Brain Activation Detected by BOLD, Blood Volume and Blood Flow. Front Hum Neurosci. 2018;12:443.