MRI is capable of producing three-dimensional images at resolutions from sub-millimeter to a few microns and has long been recognized for its potential to augment histopathological evaluations. Investigation of sub-cellular structures by MRI provide the best examples of MR histology. The MRI signal is also sensitive to many changes seen in pathology, even though some of these signal changes may not be very specific. Improvements in MRI hardware and techniques make MR histology more accessible to investigators.
1 Johnson, G. A. et al. Histology by magnetic resonance microscopy. Magn Reson Q 9, 1-30 (1993).
2 Lee, S. C. et al. One micrometer resolution NMR microscopy. J Magn Reson 150, 207-213, (2001).
3 Flint, J. J., Menon, K., Hansen, B., Forder, J. & Blackband, S. J. Visualization of live, mammalian neurons during Kainate-infusion using magnetic resonance microscopy. Neuroimage 219, 116997, (2020).
4 Ciobanu, L., Seeber, D. A. & Pennington, C. H. 3D MR microscopy with resolution 3.7 microm by 3.3 microm by 3.3 microm. J Magn Reson 158, 178-182 (2002).
5 Federau, C. & Gallichan, D. Motion-Correction Enabled Ultra-High Resolution In-Vivo 7T-MRI of the Brain. PLoS One 11, e0154974 (2016).
6 Stucht, D. et al. Highest Resolution In Vivo Human Brain MRI Using Prospective Motion Correction. PLoS One 10, e0133921 (2015).
7 Barbier, E. L. et al. Imaging cortical anatomy by high-resolution MR at 3.0T: detection of the stripe of Gennari in visual area 17. Magn Reson Med 48, 735-738 (2002).
8 Fischl, B. et al. Predicting the location of entorhinal cortex from MRI. Neuroimage 47, 8-17 (2009).
9 Absinta, M. et al. Postmortem magnetic resonance imaging to guide the pathologic cut: individualized, 3-dimensionally printed cutting boxes for fixed brains. J Neuropathol Exp Neurol 73, 780-788 (2014).
10 De Groot, C. J. et al. Post-mortem MRI-guided sampling of multiple sclerosis brain lesions: increased yield of active demyelinating and (p)reactive lesions. Brain 124, 1635-1645 (2001).
11 Yao, B. et al. Susceptibility contrast in high field MRI of human brain as a function of tissue iron content. Neuroimage 44, 1259-1266 (2009).
12 Nair, G., Dodd, S., Ha, S. K., Koretsky, A. P. & Reich, D. S. Ex vivo MR microscopy of a human brain with multiple sclerosis: Visualizing individual cells in tissue using intrinsic iron. Neuroimage 223, 117285 (2020).
13 Edlow, B. L. et al. 7 Tesla MRI of the ex vivo human brain at 100 micron resolution. Sci Data 6, 244 (2019).
14 McNab, J. A. et al. The Human Connectome Project and beyond: initial applications of 300 mT/m gradients. Neuroimage 80, 234-245 (2013).
15 Duyn, J. H. et al. High-field MRI of brain cortical substructure based on signal phase. Proc Natl Acad Sci U S A 104, 11796-11801 (2007).
16 Sengupta, S. et al. High resolution anatomical and quantitative MRI of the entire human occipital lobe ex vivo at 9.4T. Neuroimage 168, 162-171 (2018).
17 Suddarth, S. A. & Johnson, G. A. Three-dimensional MR microscopy with large arrays. Magn Reson Med 18, 132-141 (1991).
18 Dawe, R. J., Bennett, D. A., Schneider, J. A., Vasireddi, S. K. & Arfanakis, K. Postmortem MRI of human brain hemispheres: T2 relaxation times during formaldehyde fixation. Magn Reson Med 61, 810-818 (2009).
19 Shepherd, T. M., Thelwall, P. E., Stanisz, G. J. & Blackband, S. J. Aldehyde fixative solutions alter the water relaxation and diffusion properties of nervous tissue. Magn Reson Med 62, 26-34 (2009).
20 D'Arceuil, H. & de Crespigny, A. The effects of brain tissue decomposition on diffusion tensor imaging and tractography. Neuroimage 36, 64-68, (2007).
21 Kanawaku, Y. et al. High-resolution 3D-MRI of postmortem brain specimens fixed by formalin and gadoteridol. Leg Med (Tokyo) 16, 218-221 (2014).
22 Benveniste, H., Kim, K., Zhang, L. & Johnson, G. A. Magnetic resonance microscopy of the C57BL mouse brain. Neuroimage 11, 601-611, (2000).
23 Stewart, W. A., Hall, L. D., Berry, K. & Paty, D. W. Correlation between NMR scan and brain slice data in multiple sclerosis. Lancet 2, 412, (1984).
24 Beck, E. S. et al. Inversion Recovery Susceptibility Weighted Imaging With Enhanced T2 Weighting at 3 T Improves Visualization of Subpial Cortical Multiple Sclerosis Lesions. Invest Radiol 55, 727-735, (2020).