ASL: Acquisition & Analysis in the Body
Susan T. Francis1
1University of Nottingham, Nottingham, United Kingdom

Synopsis

This lecture will outline Arterial Spin Labelling acquisition and analysis methods used in body applications. The considerations for ASL acquisition in terms of labelling schemes and post-label delay, image readout, and methods to reduce motion effects for body ASL are discussed. Analysis methods used in the body applications to account for transit delays and correct for motion will be discussed. The application of ASL MRI across various body organs will be outlined including the kidney, placenta, pancreas and liver, and heart, with clinical applications highlighted.

Objectives

To describe the acquisition and analysis methods used for Arterial Spin Labelling (ASL) in the body and the associated challenges. To highlight the current status, recent technical advances, and clinical applications of body ASL.

Purpose

Arterial spin labelling (ASL) is an MRI technique that provides a non-contrast enhanced method to assess tissue perfusion using the intrinsic signal from water in the body. ASL is well-established technique in the brain, and applications of ASL in the body are currently growing rapidly. To date, in the body ASL has been most widely applied in the kidney (1-11), and also been demonstrated in the pancreas (12-15), liver (16-21) and heart (22-31), as well as the placenta (32-37). Since ASL is contrast free, it can be used in situations in which gadolinium-based contrast agents are contraindicated, such as in renal disease where there is the risk of nephrogenic systemic fibrosis and for dynamic studies where repeated measures are required, for example to study the temporal evolution in response to physiological manipulations using pharmaceuticals (38), oxygen (16), or exercise (39).

Methods and Results

There are a number of considerations to acquiring ASL in the body. First, is the choice of how to label the magnetisation of the inflowing blood, with options including either pulsed ASL (PASL) (40) or pseudocontinuous ASL (PCASL) (3, 41, 42), or the use of velocity-selective arterial spin labelling (VSASL) (4, 42). Secondly, for body applications the choice of image readout scheme to use must be considered (6-10), this is a trade-off in terms of the image distortions, achievable spatial resolution and the number of slices to acquire, and whether ASL is being combined with other multiparametric measures. Finally, the method with which to reduce or correct respiratory motion must be considered, with the added complication of heart motion for cardiac ASL. Due to the intrinsically low SNR of ASL, a number of signal averages must be combined and any motion between these must be minimised. Respiratory motion can be overcome using respiratory triggering, breath-holding or the use of a navigator echo (4,7,9). Alternatively, motion correction and data sorting techniques can be applied in post-processing to eliminate any motion artefacts (7-9). Further background suppression (BGS) methods can also be applied to suppress the signal from any static tissue (7,8). There have been the largest number of ASL body studies of the kidney, with this being a rapidly growing area. This is outlined by a recent systematic review [1] and consensus paper [2] by the PARENCHIMA consortium. Studies have shown a decrease in renal perfusion with diseases such as Chronic Kidney Disease (44) and Acute Kidney Injury (45). In liver disease, a decrease in liver perfusion as measured with ASL has been demonstrated in patients with compensated cirrhosis (19). Whilst recently, ASL of the placenta has been shown to be promising for the predicting the subsequence development of ischemic placenta (33). One major challenge in making body ASL a clinically useable tool is the limited number of studies to directly compare ASL variants (5,35) in terms of sensitivity, specificity, reproducibility and change with disease. Although MRI vendors are now providing ASL sequences for use in the brain, sequences available for body ASL are limited.

Conclusion

There have been a number of recent advances in body ASL in terms of image acquisition and analysis methods demonstrating the feasibility and repeatability of measures. To make ASL a more clinically useable tool for body applications there now needs to be efforts to harmonise techniques and assess variation in sensitivity, specificity and reproducibility.

Acknowledgements

No acknowledgement found.

References

1. Arterial spin labelling MRI to measure renal perfusion: a systematic review and statement paper. Odudu A, Nery F, Harteveld AA, Evans RG, Pendse D, Buchanan CE, Francis ST, Fernández-Seara MA. Nephrol Dial Transplant. 2018 Sep 1;33(suppl_2):ii15-ii21. doi: 10.1093/ndt/gfy180. PMID: 30137581

2. Consensus-based technical recommendations for clinical translation of renal ASL MRI. Nery F, Buchanan CE, Harteveld AA, Odudu A, Bane O, Cox EF, Derlin K, Gach HM, Golay X, Gutberlet M, Laustsen C, Ljimani A, Madhuranthakam AJ, Pedrosa I, Prasad PV, Robson PM, Sharma K, Sourbron S, Taso M, Thomas DL, Wang DJJ, Zhang JL, Alsop DC, Fain SB, Francis ST, Fern√°ndez-Seara MA. MAGMA. 2020 Feb;33(1):141-161. doi: 10.1007/s10334-019-00800-z. Epub 2019 Dec 12. PMID: 31833014

3. Optimization of pseudo-continuous arterial spin labeling for renal perfusion imaging. Echeverria-Chasco R, Vidorreta M, Aramendía-Vidaurreta V, Cano D, Escalada J, Garcia-Fernandez N, Bastarrika G, Fernández-Seara MA.Magn Reson Med. 2021 Mar;85(3):1507-1521. doi: 10.1002/mrm.28531. Epub 2020 Oct 5.PMID: 33017483

4. Influence of labeling parameters and respiratory motion on velocity-selective arterial spin labeling for renal perfusion imaging. Bones IK, Franklin SL, Harteveld AA, van Osch MJP, Hendrikse J, Moonen C, van Stralen M, Bos C. Magn Reson Med. 2020 Oct;84(4):1919-1932. doi: 10.1002/mrm.28252. Epub 2020 Mar 17. PMID: 32180263

5. Comparison of multi-delay FAIR and pCASL labeling approaches for renal perfusion quantification at 3T MRI. Harteveld AA, de Boer A, Franklin SL, Leiner T, van Stralen M, Bos C. MAGMA. 2020 Feb;33(1):81-94. doi: 10.1007/s10334-019-00806-7. Epub 2019 Dec

6. Volumetric abdominal perfusion measurement using a pseudo-randomly sampled 3D fast-spin-echo (FSE) arterial spin labeling (ASL) sequence and compressed sensing reconstruction. Taso M, Zhao L, Guidon A, Litwiller DV, Alsop DC. Magn Reson Med. 2019 Aug;82(2):680-692. doi: 10.1002/mrm.27761. Epub 2019 Apr 5. PMID: 30953396

7. Enabling free-breathing background suppressed renal pCASL using fat imaging and retrospective motion correction. Bones IK, Harteveld AA, Franklin SL, van Osch MJP, Hendrikse J, Moonen CTW, Bos C, van Stralen M. Magn Reson Med. 2019 Jul;82(1):276-288. doi: 10.1002/mrm.27723. Epub 2019 Mar 18. PMID: 30883873.

8. Influence of background suppression and retrospective realignment on free-breathing renal perfusion measurement using pseudo-continuous ASL. Taso M, Guidon A, Alsop DC. Magn Reson Med. 2019 Apr;81(4):2439-2449. doi: 10.1002/mrm.27575. Epub 2018 Nov 25. PMID: 30474312

9. Evaluation of 2D Imaging Schemes for Pulsed Arterial Spin Labeling of the Human Kidney Cortex. Buchanan CE, Cox EF, Francis ST. Diagnostics (Basel). 2018 Jun 28;8(3):43. doi: 10.3390/diagnostics8030043. PMID: 29958409.

10. Multislice perfusion of the kidneys using parallel imaging: image acquisition and analysis strategies. Gardener AG, Francis ST. Magn Reson Med. 2010 Jun;63(6):1627-36. doi: 10.1002/mrm.22387. PMID: 20512866

11. Multiparametric Renal Magnetic Resonance Imaging: Validation, Interventions, and Alterations in Chronic Kidney Disease. Cox EF, Buchanan CE, Bradley CR, Prestwich B, Mahmoud H, Taal M, Selby NM, Francis ST. Front Physiol. 2017 Sep 14;8:696. doi: 10.3389/fphys.2017.00696. eCollection 2017. PMID: 28959212.

12. Pancreatic perfusion modulation following glucose stimulation assessed by noninvasive arterial spin labeling (ASL) MRI. Taso M, Papadopoulou F, Smith MP, Tsai LL, Mortele KJ, Alsop DC. J Magn Reson Imaging. 2020 Mar;51(3):854-860. doi: 10.1002/jmri.26899. Epub 2019 Aug 13. PMID: 31410924

13. Dynamic non-invasive ASL perfusion imaging of a normal pancreas with secretin augmented MR imaging. Schawkat K, Ith M, Christe A, Kühn W, Chittazhathu Y, Bains L, Runge VM, Heverhagen JT. Eur Radiol. 2018 Jun;28(6):2389-2396. doi: 10.1007/s00330-017-5227-8. Epub 2018 Jan 4. PMID: 29302785.

14. Pancreatic perfusion and arterial-transit-time quantification using pseudocontinuous arterial spin labeling at 3T. Taso M, Guidon A, Zhao L, Mortele KJ, Alsop DC. Magn Reson Med. 2019 Jan;81(1):542-550. doi: 10.1002/mrm.27435. Epub 2018 Sep 5. PMID: 30229559.

15. Temporal assessment of pancreatic blood flow and perfusion following secretin stimulation using noninvasive MRI. Cox EF, Smith JK, Chowdhury AH, Lobo DN, Francis ST, Simpson J. J Magn Reson Imaging. 2015 Nov;42(5):1233-40. doi: 10.1002/jmri.24889. Epub 2015 Mar 18. PMID: 25787269.

16. Liver perfusion MRI in a rodent model of cirrhosis: Agreement with bulk-flow phase-contrast MRI and noninvasive evaluation of inflammation in chronic liver disease using flow-sensitive alternating inversion recovery arterial spin labelling and tissue T1. Chouhan MD, Ramasawmy R, Bainbridge A, Campbell-Washburn A, Halligan S, Davies N, Walker-Samuel S, Lythgoe MF, Mookerjee RP, Taylor SA. NMR Biomed. 2021 Feb;34(2):e4423. doi: 10.1002/nbm.4423. Epub 2020 Oct 7.

17. Using MRI to study the alterations in liver blood flow, perfusion, and oxygenation in response to physiological stress challenges: Meal, hyperoxia, and hypercapnia. Cox EF, Palaniyappan N, Aithal GP, Guha IN, Francis ST. J Magn Reson Imaging. 2019 Jun;49(6):1577-1586. doi: 10.1002/jmri.26341. Epub 2018 Oct 24. PMID: 30353969.

18. Spatial-temporal perfusion patterns of the human liver assessed by pseudo-continuous arterial spin labeling MRI. Martirosian P, Pohmann R, Schraml C, Schwartz M, Kuestner T, Schwenzer NF, Scheffler K, Nikolaou K, Schick F. Z Med Phys. 2019 May;29(2):173-183. doi: 10.1016/j.zemedi.2018.08.004. Epub 2018 Sep 25. PMID: 30266458

19. Multi-organ assessment of compensated cirrhosis patients using quantitative magnetic resonance imaging. Bradley CR, Cox EF, Scott RA, James MW, Kaye P, Aithal GP, Francis ST, Guha IN. J Hepatol. 2018 Nov;69(5):1015-1024. doi: 10.1016/j.jhep.2018.05.037. Epub 2018 Jun 8. PMID: 298861552

0. Non-invasive assessment of portal hypertension using quantitative magnetic resonance imaging. Palaniyappan N, Cox E, Bradley C, Scott R, Austin A, O'Neill R, Ramjas G, Travis S, White H, Singh R, Thurley P, Guha IN, Francis S, Aithal GP. J Hepatol. 2016 Dec;65(6):1131-1139. doi: 10.1016/j.jhep.2016.07.021. Epub 2016 Jul 27. PMID: 27475617

21. Quantification of liver perfusion using multidelay pseudocontinuous arterial spin labeling. Pan X, Qian T, Fernandez-Seara MA, Smith RX, Li K, Ying K, Sung K, Wang DJ. J Magn Reson Imaging. 2016 May;43(5):1046-54. doi: 10.1002/jmri.25070. Epub 2015 Oct 7. PMID: 26445928.

22. Myocardial arterial spin labeling in systole and diastole using flow-sensitive alternating inversion recovery with parallel imaging and compressed sensing. Henningsson M, Carlhäll CJ, Kihlberg J. NMR Biomed. 2021 Feb;34(2):e4436. doi: 10.1002/nbm.4436. Epub 2020 Nov 4. PMID: 33150707

23. Quantification of Myocardial Perfusion With Vasodilation Using Arterial Spin Labeling at 1.5T. Aramendía-Vidaurreta V, Echeverría-Chasco R, Vidorreta M, Bastarrika G, Fernández-Seara MA. J Magn Reson Imaging. 2021 Mar;53(3):777-788. doi: 10.1002/jmri.27396. Epub 2020 Oct 16. PMID: 33063433

24. Improved velocity-selective labeling pulses for myocardial ASL. Landes V, Javed A, Jao T, Qin Q, Nayak K. Magn Reson Med. 2020 Oct;84(4):1909-1918. doi: 10.1002/mrm.28253. Epub 2020 Mar 15. PMID: 32173909

25. Accuracy, uncertainty, and adaptability of automatic myocardial ASL segmentation using deep CNN. Do HP, Guo Y, Yoon AJ, Nayak KS. Magn Reson Med. 2020 May;83(5):1863-1874. doi: 10.1002/mrm.28043. Epub 2019 Nov 14. PMID: 31729078

26. Optimal repetition time for free breathing myocardial arterial spin labeling. Aramendía-Vidaurreta V, García-Osés A, Vidorreta M, Bastarrika G, Fernández-Seara MA. NMR Biomed. 2019 May;32(5):e4077. doi: 10.1002/nbm.4077. Epub 2019 Feb 27. PMID: 30811728

27. Demonstration of velocity selective myocardial arterial spin labeling perfusion imaging in humans. Jao TR, Nayak KS. Magn Reson Med. 2018 Jul;80(1):272-278. doi: 10.1002/mrm.26994. Epub 2017 Nov 6. PMID: 29106745

28. Assessment of segmental myocardial blood flow and myocardial perfusion reserve by adenosine-stress myocardial arterial spin labeling perfusion imaging. Yoon AJ, Do HP, Cen S, Fong MW, Saremi F, Barr ML, Nayak KS. J Magn Reson Imaging. 2017 Aug;46(2):413-420. doi: 10.1002/jmri.25604. Epub 2017 Feb 2. PMID: 28152238

29. A look-locker acquisition scheme for quantitative myocardial perfusion imaging with FAIR arterial spin labeling in humans at 3 tesla. Keith GA, Rodgers CT, Chappell MA, Robson MD. Magn Reson Med. 2017 Aug;78(2):541-549. doi: 10.1002/mrm.26388. Epub 2016 Sep 8. PMID: 27604183

30. Assessment of myocardial blood flow (MBF) in humans using arterial spin labeling (ASL): feasibility and noise analysis. Zun Z, Wong EC, Nayak KS. Magn Reson Med 2009;62:975–983. doi: 10.1002/mrm.22088.

31. Estimation of perfusion and arterial transit time in myocardium using free-breathing myocardial arterial spin labeling with navigator-echo. Wang DJJ, Bi X, Avants BB, Meng T, Zuehlsdorff S, Detre JA. Magn. Reson. Med. 2010;64:1289–1295. doi: 10.1002/mrm.22630.

32. Systematic evaluation of velocity-selective arterial spin labeling settings for placental perfusion measurement. Harteveld AA, Hutter J, Franklin SL, Jackson LH, Rutherford M, Hajnal JV, van Osch MJP, Bos C, De Vita E. Magn Reson Med. 2020 Oct;84(4):1828-1843. doi: 10.1002/mrm.28240. Epub 2020 Mar 6.

33. Human Placenta Blood Flow During Early Gestation With Pseudocontinuous Arterial Spin Labeling MRI. Liu D, Shao X, Danyalov A, Chanlaw T, Masamed R, Wang DJJ, Janzen C, Devaskar SU, Sung K. J Magn Reson Imaging. 2020 Apr;51(4):1247-1257. doi: 10.1002/jmri.26944. Epub 2019 Nov 4. PMID: 31680405

34. Non-invasive assessment of placental perfusion in vivo using arterial spin labeling (ASL) MRI: A preclinical study in rats. Deloison B, Salomon LJ, Quibel T, Chalouhi GE, Alison M, Balvay D, Autret G, Cuenod CA, Clement O, Siauve N. Placenta. 2019 Feb;77:39-45. doi: 10.1016/j.placenta.2019.01.019. Epub 2019 Feb 5. PMID: 30827354

35. Placental perfusion imaging using velocity-selective arterial spin labeling. Zun Z, Limperopoulos C. Magn Reson Med. 2018 Sep;80(3):1036-1047. doi: 10.1002/mrm.27100. Epub 2018 Feb 13. PMID: 29436733

36. Measuring human placental blood flow with multidelay 3D GRASE pseudocontinuous arterial spin labeling at 3T. Shao X, Liu D, Martin T, Chanlaw T, Devaskar SU, Janzen C, Murphy AM, Margolis D, Sung K, Wang DJJ. J Magn Reson Imaging. 2018 Jun;47(6):1667-1676. doi: 10.1002/jmri.25893. Epub 2017 Nov 14.

37. Non-invasive mapping of placental perfusion. Francis ST, Duncan KR, Moore RJ, Baker PN, Johnson IR, Gowland PA. Lancet. 1998 May 9;351(9113):1397-9. doi: 10.1016/S0140-6736(97)07089-X. PMID: 9593410.

38. Human renal response to furosemide: Simultaneous oxygenation and perfusion measurements in cortex and medulla. Haddock B, Larsson HBW, Francis S, Andersen UB. Acta Physiol (Oxf). 2019 Sep;227(1):e13292. doi: 10.1111/apha.13292. Epub 2019 May 21.

39. Assessment of Perfusion and Oxygenation of the Human Renal Cortex and Medulla by Quantitative MRI during Handgrip Exercise. Haddock BT, Francis ST, Larsson HBW, Andersen UB. J Am Soc Nephrol. 2018 Oct;29(10):2510-2517. doi: 10.1681/ASN.2018030272. Epub 2018 Sep 11. PMID: 30206141.

40. MR perfusion studies with T1-weighted echo planar imaging. Kwong KK, Chesler DA, Weisskoff RM, Donahue KM, Davis TL, Ostergaard L, Campbell TA, Rosen BR. Magn Reson Med. 1995 Dec;34(6):878-87. doi: 10.1002/mrm.1910340613. PMID: 8598815.

41. Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Dai W, Garcia D, de Bazelaire C, Alsop DC. Magn Reson Med. 2008 Dec;60(6):1488-97. doi: 10.1002/mrm.21790. PMID: 19025913.

42. A theoretical and experimental comparison of continuous and pulsed arterial spin labeling techniques for quantitative perfusion imaging. Wong EC, Buxton RB, Frank LR. Magn Reson Med. 1998 Sep;40(3):348-55. doi: 10.1002/mrm.1910400303. PMID: 9727936.

43. Velocity-selective arterial spin labeling. Wong EC, Cronin M, Wu WC, Inglis B, Frank LR, Liu TT. Magn Reson Med. 2006 Jun;55(6):1334-41. doi: 10.1002/mrm.20906. PMID: 16700025.

44. Quantitative assessment of renal structural and functional changes in chronic kidney disease using multi-parametric magnetic resonance imaging. Buchanan CE, Mahmoud H, Cox EF, McCulloch T, Prestwich BL, Taal MW, Selby NM, Francis ST. Nephrol Dial Transplant. 2020 Jun 1;35(6):955-964. doi: 10.1093/ndt/gfz129. PMID: 3125744

45. Multiparametric MRI assessment of renal structure and function in acute kidney injury and renal recovery, Buchanan CE, Mahmoud H, Cox EF, McCulloch T, Prestwich BL, Taal MW, Selby NM, Francis ST. Clinical Kidney Journal, sfaa221, https://doi.org/10.1093/ckj/sfaa221


Proc. Intl. Soc. Mag. Reson. Med. 29 (2021)