Hybrid MRI methods promise to combine the high-resolution multi-contrast imaging benefits of MRI with new approaches aimed at early disease detection and clinical interventions. PET-MRI systems add metabolic and functional information from PET to potentially provide a complete imaging modality for studying musculoskeletal disease while high-intensity focused-ultrasound offers therapeutic interventions for bone tumors. This educational talk will discuss emerging applications of these technologies and their comparative advantages. Technical considerations and challenges as they specifically relate to musculoskeletal disease will also be discussed.
1. Wilmot, A., et al. Molecular imaging: an innovative force in musculoskeletal radiology. AJR Am J Roentgenol 201, 264-277 (2013).
2. Kogan, F., Fan, A.P. & Gold, G.E. Potential of PET-MRI for imaging of non-oncologic musculoskeletal disease. Quantitative Imaging in Medicine and Surgery 6, 756-771 (2016).
3. Buchbender, C., Heusner, T.A., Lauenstein, T.C., Bockisch, A. & Antoch, G. Oncologic PET/MRI, part 2: bone tumors, soft-tissue tumors, melanoma, and lymphoma. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 53, 1244-1252 (2012).
4. Kransdorf, M.J. & Murphey, M.D. Imaging of Soft-Tissue Musculoskeletal Masses: Fundamental Concepts. Radiographics 36, 1931-1948 (2016).
5. Zhang, X., et al. Synergistic role of simultaneous PET/MRI-MRS in soft tissue sarcoma metabolism imaging. Magn Reson Imaging 34, 276-279 (2016).
6. Andersen, K.F., Fuglo, H.M., Rasmussen, S.H., Petersen, M.M. & Loft, A. Volume-Based F-18 FDG PET/CT Imaging Markers Provide Supplemental Prognostic Information to Histologic Grading in Patients With High-Grade Bone or Soft Tissue Sarcoma. Medicine (Baltimore) 94, e2319 (2015).
7. Benz, M.R., et al. Utilization of positron emission tomography in the management of patients with sarcoma. Curr Opin Oncol 21, 345-351 (2009).
8. Hong, S.P., et al. Prognostic value of 18F-FDG PET/CT in patients with soft tissue sarcoma: comparisons between metabolic parameters. Skeletal Radiol 43, 641-648 (2014).
9. Benz, M.R., et al. FDG-PET/CT imaging predicts histopathologic treatment responses after the initial cycle of neoadjuvant chemotherapy in high-grade soft-tissue sarcomas. Clin Cancer Res 15, 2856-2863 (2009).
10. Evilevitch, V., et al. Reduction of glucose metabolic activity is more accurate than change in size at predicting histopathologic response to neoadjuvant therapy in high-grade soft-tissue sarcomas. Clin Cancer Res 14, 715-720 (2008).
11. Shortt, C.P., et al. Whole-Body MRI versus PET in assessment of multiple myeloma disease activity. AJR Am J Roentgenol 192, 980-986 (2009).
12. Hunter, D.J., Schofield, D. & Callander, E. The individual and socioeconomic impact of osteoarthritis. Nature reviews. Rheumatology 10, 437-441 (2014).
13. Li, Q., Amano, K., Link, T.M. & Ma, C.B. Advanced Imaging in Osteoarthritis. Sports Health 8, 418-428 (2016).
14. Borthakur, A., et al. Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed 19, 781-821 (2006).
15. Kogan, F., Hargreaves, B.A. & Gold, G.E. Volumetric multislice gagCEST imaging of articular cartilage: Optimization and comparison with T1rho. Magn Reson Med 77, 1134-1141 (2017).
16. Watkins, L., et al. Assessment of quantitative [(18)F]Sodium fluoride PET measures of knee subchondral bone perfusion and mineralization in osteoarthritic and healthy subjects. Osteoarthritis Cartilage (2021).
17. Kogan, F., et al. PET/MRI of metabolic activity in osteoarthritis: A feasibility study. J Magn Reson Imaging 45, 1736-1745 (2017).
18. Kogan, F., Fan, A.P., Black, M., Hargreaves, B. & Gold, G. Imaging of Bone Metabolism and Its Spatial Relationship with Cartilage Matrix Changes in ACL-Injured Patients. in Orthopaedic Research Society 2018 Annual Meeting (New Orleans, LA, 2018).
19. Tibrewala, R., et al. [(18) F]-Sodium Fluoride PET/MR Imaging for Bone-Cartilage Interactions in Hip Osteoarthritis: A Feasibility Study. Journal of orthopaedic research : official publication of the Orthopaedic Research Society 37, 2671-2680 (2019).
20. Savic, D., et al. Imaging Bone-Cartilage Interactions in Osteoarthritis Using [18F]-NaF PET-MRI. Mol Imaging 15, 1-12 (2016).
21. Tibrewala, R., Pedoia, V., Bucknor, M. & Majumdar, S. Principal Component Analysis of Simultaneous PET-MRI Reveals Patterns of Bone-Cartilage Interactions in Osteoarthritis. J Magn Reson Imaging 52, 1462-1474 (2020).
22. Mackay, J., Watkins, L.E., Gold, G. & Kogan, F. Imaging of Bone-Synovium Interactions Using Dynamic Contrast Enhanced MRI and 18F-Sodium Fluoride PET. in 28th Annual Meeting of the ISMRM (Paris, France, 2020).
23. Nakamura, H., et al. Positron emission tomography with 18F-FDG in osteoarthritic knee. Osteoarthritis Cartilage 15, 673-681 (2007).
24. Wandler, E., et al. Diffuse FDG shoulder uptake on PET is associated with clinical findings of osteoarthritis. AJR Am J Roentgenol 185, 797-803 (2005).
25. Korbin, S., et al. PET/MRI reveals ongoing metabolic activity in ACL grafts one year post-ACL reconstruction. J Exp Orthop 7, 40 (2020).
26. R, A.M., et al. ACL graft metabolic activity assessed by (18)FDG PET-MRI. The Knee 24, 792-797 (2017).
27. Haddock, B., et al. Assessment of acute bone loading in humans using [(18)F]NaF PET/MRI. Eur J Nucl Med Mol Imaging (2019).
28. Watkins, L.E., et al. Evaluating Changes in Bone Mineralization and Perfusion in Response to Acute Exercise in an Osteoarthritic Population. in 2020 International Workshop on Osteoarthritis Imaging (Slazburg, Austria, 2020).
29. Watkins, L.E., et al. Sodium Fluoride PET-MRI Detects Regions of Abnormal Bone Response to Acute Exercise. in 2019 International Workshop on Osteoarthritis Imaging (Prince Edward Island, Canada, 2019).
30. DiBonaventura, M.D., et al. The prevalence of probable neuropathic pain in the US: results from a multimodal general-population health survey. J Pain Res 10, 2525-2538 (2017).
31. Behera, D., Jacobs, K.E., Behera, S., Rosenberg, J. & Biswal, S. (18)F-FDG PET/MRI can be used to identify injured peripheral nerves in a model of neuropathic pain. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 52, 1308-1312 (2011).
32. Yoon, D., et al. Management of Complex Regional Pain Syndrome (CRPS) with [18F]FTC-146 PET/MRI. in Proceedings of International Society for Magnetic Resonance in Medicine 1164 (Hawaii, 2017).
33. Cipriano, P.W., et al. Diagnosis and Successful Management of an Unusual Presentation of Chronic Foot Pain Using Positron Emission Tomography/Magnetic Resonance Imaging and a Simple Surgical Procedure. Clin J Sport Med 30, e11-e14 (2020).
34. Yoon, D., Kogan, F., Gold, G.E. & Biswal, S. Identifying Musculoskeletal Pain Generators Using Clinical PET. Semin Musculoskelet Radiol 24, 441-450 (2020).
35. Cipriano, P.W., et al. Successful treatment of chronic knee pain following localization by a sigma-1 receptor radioligand and PET/MRI: a case report. J Pain Res 11, 2353-2357 (2018).
36. Vandenberghe, S. & Marsden, P.K. PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys Med Biol 60, R115-154 (2015).
37. Peng, B.H. & Levin, C.S. Recent development in PET instrumentation. Curr Pharm Biotechnol 11, 555-571 (2010).
38. Quick, H.H. Integrated PET/MR. J Magn Reson Imaging 39, 243-258 (2014).
39. Fowler, K.J., McConathy, J. & Narra, V.R. Whole-body simultaneous positron emission tomography (PET)-MR: optimization and adaptation of MRI sequences. J Magn Reson Imaging 39, 259-268 (2014).
40. Hofmann, M., Pichler, B., Scholkopf, B. & Beyer, T. Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging 36 Suppl 1, S93-104 (2009).
41. Yoon, D., et al. Robust MR-based attenuation correction for PET near metal implants. in Proceedings of International Society for Magnetic Resonance in Medicine (accepted) (Paris, 2018).
42. Scipione, R., et al. HIFU for Bone Metastases and other Musculoskeletal Applications. Semin Intervent Radiol 35, 261-267 (2018).
43. Bing, F., Vappou, J., de Mathelin, M. & Gangi, A. Targetability of osteoid osteomas and bone metastases by MR-guided high intensity focused ultrasound (MRgHIFU). Int J Hyperthermia 35, 471-479 (2018).
44. Napoli, A., et al. MR imaging-guided focused ultrasound for treatment of bone metastasis. Radiographics 33, 1555-1568 (2013).
45. Gianfelice, D., et al. Palliative treatment of painful bone metastases with MR imaging--guided focused ultrasound. Radiology 249, 355-363 (2008).
46. Ghanouni, P., et al. Magnetic resonance-guided focused ultrasound treatment of extra-abdominal desmoid tumors: a retrospective multicenter study. Eur Radiol 27, 732-740 (2017).
47. Weeks, E.M., Platt, M.W. & Gedroyc, W. MRI-guided focused ultrasound (MRgFUS) to treat facet joint osteoarthritis low back pain--case series of an innovative new technique. Eur Radiol 22, 2822-2835 (2012).