Tractometry from diffusion MRI estimates the tissue properties along the length of major white matter tracts, using: computational tractography; tract segmentation using atlases or other classification methods; and microstructural modeling in voxels along the length of the estimated tracts. Given previous concerns about the sensitivity of dMRI-based analysis to variations in methodology, we tested: the reliability of tractometry results within individuals across measurements; and within measurement, across variations in the analysis methods. We found that although there are variations that arise from differences in tractography methods, bundle segmentation methods, microstructural modeling, and different software implementations, tractometry is overall quite robust.
1. Maier-Hein KH, Neher PF, Houde JC, Cˆot ́e MA, Garyfallidis E, Zhong J, et al. The challenge of mapping the human connectome based on diffusion tractography. Nature Communications. 2017;8(1):1349.doi:10.1038/s41467-017-01285-x.
2. Thomas C, Ye FQ, Irfanoglu MO, Modi P, Saleem KS, Leopold DA, et al. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proc Natl Acad Sci U S A. 2014;111(46):16574–16579.
3. Schilling KG, Rheault F, Petit L, Hansen CB, Nath V, Yeh FC, et al. Tractography dissection variability: what happens when 42 groups dissect 14 white matter bundles on the same dataset?; 2020.
4. Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PCM, Mori S. Fiber tract-based atlas of human white matter anatomy. Radiology. 2004;230(1):77–87.
5. Oishi K, Zilles K, Amunts K, Faria A, Jiang H, Li X, et al. Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter. Neuroimage. 2008;43(3):447–457.
6. Yeh FC, Panesar S, Fernandes D, Meola A, Yoshino M, Fernandez-Miranda JC, et al. Population-averaged atlas of the macroscale human structural connectome and its network topology. NeuroImage. 2018;178:57–68. doi:10.1016/j.neuroimage.2018.05.027.
7. Garyfallidis E, Cˆot ́e MA, Rheault F, Sidhu J, Hau J, Petit L, et al. Recognition of white matter bundles using local and global streamline-based registration and clustering. Neuroimage. 2017;.
8. Yeatman JD, Dougherty RF, Myall NJ, Wandell BA, Feldman HM. Tract Profiles of White Matter Properties: Automating Fiber-Tract Quantification. PLOS ONE. 2012;7(11):e49790. doi:10.1371/journal.pone.0049790.
9. Catani M, Thiebaut de Schotten M. A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex. 2008;44(8):1105–1132.
10. Yendiki A, Panneck P, Srinivasan P, Stevens A, Z ̈ollei L, Augustinack J, et al. Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Front Neuroinform. 2011;5:23.
11. Wassermann D, Makris N, Rathi Y, Shenton M, Kikinis R, Kubicki M, et al. The white matter query language: a novel approach for describing human white matter anatomy. Brain Struct Funct. 2016;221(9):4705–4721.
12. Novikov DS, Kiselev VG, Jespersen SN. On modeling. Magn Reson Med. 2018;79(6):3172–3193.
13. Colby JB, Soderberg L, Lebel C, Dinov ID, Thompson PM, Sowell ER. Along-tract statistics allow for enhanced tractography analysis. Neuroimage. 2012;59(4):3227–3242.
14. Richie-Halford A, Yeatman J, Simon N, Rokem A. Multidimensional analysis and detection of informative features in diffusion MRI measurements of human white matter; 2019.
15. Dayan M, Monohan E, Pandya S, Kuceyeski A, Nguyen TD, Raj A, et al. Profilometry: A new statistical framework for the characterization of white matter pathways, with application to multiple sclerosis. HumBrain Mapp. 2015;.
16. Sotiropoulos SN, Jbabdi S, Xu J, Andersson JL, Moeller S, Auerbach EJ, et al. Advances in diffusion MRI acquisition and processing in the Human Connectome Project. Neuroimage. 2013;80:125–143.
17. Garyfallidis E, Brett M, Amirbekian B, Rokem A, Van Der Walt S, Descoteaux M, et al. Dipy, a library for the analysis of diffusion MRI data. Frontiers in Neuroinformatics. 2014;8. doi:10.3389/fninf.2014.00008.
18. Gorgolewski KJ, Auer T, Calhoun VD, Craddock RC, Das S, Duff EP, et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Scientific Data. 2016;3(1):160044. doi:10.1038/sdata.2016.44.
19. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med. 2005;53(6):1432–1440.
20. Tournier JD, Calamante F, Connelly A. Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage. 2007;35(4):1459–1472. doi:10.1016/j.neuroimage.2007.02.016.
21. Cousineau M, Jodoin PM, Garyfallidis E, Cˆot ́e MA, Morency FC, Rozanski V, et al. A test-retest study on Parkinson’s PPMI dataset yields statistically significant white matter fascicles. NeuroImage : Clinical. 2017;16:222. doi:10.1016/j.nicl.2017.07.020.
22. Garyfallidis E, Cˆot ́e MA, Rheault F, Sidhu J, Hau J, Petit L, et al. Recognition of white matter bundles using local and global streamline-based registration and clustering.NeuroImage. 2018;170:283–295. doi:10.1016/j.neuroimage.2017.07.015
23. Boukadi M, Marcotte K, Bedetti C, Houde JC, Desautels A, Deslauriers-Gauthier S, et al. Test-Retest Reliability of Diffusion Measures Extracted Along White Matter Language Fiber Bundles Using HARDI-Based Tractography. Frontiers in Neuroscience. 2019;12. doi:10.3389/fnins.2018.01055.
24. Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins DL, et al. Unbiased average age-appropriate atlases for pediatric studies. NeuroImage. 2011;54(1):313–327. doi:10.1016/j.neuroimage.2010.07.033.
25. Fonov V, Evans A, McKinstry R, Almli C, Collins D. Unbiased non-linear average age-appropriate brain templates from birth to adulthood. NeuroImage. 2009;47:S102. doi:10.1016/S1053-8119(09)70884-5.
26. Dell’Acqua F, Lacerda L, Catani M, Simmons A. Anisotropic Power Maps: A diffusion contrast to reveal low anisotropy tissues from HARDI data.; p. 1.
Fig 1. Examples from different stages of tractometry
A: an example tractography is in blue. B: the top is from an MNI template [24, 25] with the waypoint ROIs for the left corticospinal tract [4] in red (enlarged for clarity). This is registered to the subject’s anisotropic power map [26] on the bottom. C: the background is the subject’s b0; the left corticospinal tract is in orange, shaded by the subject’s fractional anisotropy (FA); the ROIs are in red. D: the extracted tract profile is in orange.
Fig 2. wDSC, profile, and subject TRR of pyAFQ and mAFQ on UW-PREK and pyAFQ on HCP-TRT using different ODF models.
Colors indicate bundle. In A: texture indicates the dataset and methods being compared. Error bars show the 95% confidence interval. In B: the right is subject TRR and the left is profile TRR. On top, we compare the TRR of mAFQ and pyAFQ on UW-PREK. On the bottom, we compare DKI and CSD TRR on HCP-TRT. Point shapes indicate the extracted scalar. The red dotted line is equal TRR between methods.
Fig 3. wDSC, subject and profile robustness between the pyAFQ and mAFQ results on the pre-K pre-session data.
Bars are colored according to their bundle and textured according to their scalar. A shows wDSC robustness between pyAFQ and mAFQ on UW-PREK. B shows profile robustness and C shows subject robustness for the same comparison. Error bars show the 95% confidence interval.
Fig 4. wDSC, subject, profile robustness between the DKI and CSD ODF models on HCP-TRT.
Colors encode bundle information. Error bars represent the 95% confidence interval. A shows wDSC robustness between DKI and CSD on HCP-TRT. B shows profile robustness and C shows subject robustness between the CSD and DKI models. In these panels, textures encode the scalar information. D shows the ATR_L and SLF_L found using DKI on the left and CSD on the right for an example subject.
Fig 5. Robustness between waypoint ROIs and Recobundles on a common subset of bundles using HCP-TRT.
Colors encode bundle information and textures encode the extracted scalar. Error bars represent the 95% confidence interval. A shows wDSC between the waypoint ROI and Recobundles approach. B shows the ILF_R found by each algorithm for an example subject with wDSC 0.11. C shows profile robustness and D shows subject robustness.