Emergence of diffusion tensor imaging (DTI) has provided an exciting avenue to characterize the ligamentization process of the anterior cruciate ligament (ACL), following knee injury. However, a diverse, but limited, suite of published diffusion weighted sequences with varying parameters have posed a significant challenge to clinician-scientists wanting to integrate DTI as a tool to study the ACL. In this study, we provide a detailed comparison of DTI acquisitions toward the optimisation of ACL reconstruction using semi-automated fiber-based probabilistic tractography (FBPT), as a step-stone and reference for the clinical integration of DTI toward assessing microstructural integrity of the cruciate ligaments.
1. Van Dyck P, Zazulia K, Smekens C, Heusdens CHW, Janssens T, Sijbers J. Assessment of Anterior Cruciate Ligament Graft Maturity With Conventional Magnetic Resonance Imaging: A Systematic Literature Review. Orthop J Sport Med. Published online 2019. doi:10.1177/2325967119849012
2. Saupe N, White LM, Chiavaras MM, et al. Anterior cruciate ligament reconstruction grafts: MR imaging features at long-term follow-up-correlation with functional and clinical evaluation. Radiology. Published online 2008. doi:10.1148/radiol.2492071651
3. Yang X, Li M, Chen D, et al. Diffusion tensor imaging for anatomical and quantitative evaluation of the anterior cruciate ligament and ACL grafts: A preliminary study. J Comput Assist Tomogr. 2014;38(4):489-49
4. doi:10.1097/RCT.00000000000000784. Yang X, Chen D, Li M, Shi D, Zhu B, Jiang Q. Diffusion tensor imaging of the anterior cruciate ligament graft after reconstruction: Repeatability and diffusion tensor imaging metrics. J Comput Assist Tomogr. Published online 201
5. doi:10.1097/RCT.00000000000001985. Van Dyck P, Froeling M, De Smet E, et al. Diffusion tensor imaging of the anterior cruciate ligament graft. J Magn Reson Imaging. 2017;46(5):1423-1432. doi:10.1002/jmri.25666
6. Van Dyck P, Froeling M, Heusdens CHW, Sijbers J, Ribbens A, Billiet T. Diffusion tensor imaging of the anterior cruciate ligament following primary repair with internal bracing: A longitudinal study. J Orthop Res. 2020;(March):1-13. doi:10.1002/jor.24684
7. Liu S, Liu J, Chen W, et al. Diffusion Tensor Imaging for Quantitative Assessment of Anterior Cruciate Ligament Injury Grades and Graft. J Magn Reson Imaging. Published online 2020:1-10. doi:10.1002/jmri.27322
8. Johansen-Berg H, Behrens TEJ. Diffusion MRI: From Quantitative Measurement to in-Vivo Neuroanatomy.; 200
9. doi:10.1016/B978-0-12-374709-9.00002-X9. Dong S, Xie G, Zhang Y, Shen P, Huangfu X, Zhao J. Ligamentization of Autogenous Hamstring Grafts after Anterior Cruciate Ligament Reconstruction: Midterm Versus Long-term Results. Am J Sports Med. 2015;43(8). doi:10.1177/0363546515584039
10. Behrens TEJ, Berg HJ, Jbabdi S, Rushworth MFS, Woolrich MW. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage. 2007;23. doi:10.1016/j.neuroimage.2006.09.018
11. Behrens TEJ, Woolrich MW, Jenkinson M, et al. Characterization and Propagation of Uncertainty in Diffusion-Weighted MR Imaging. 2003;1088:1077-1088. doi:10.1002/mrm.10609
12. Wengler K, Tank D, Fukuda T, et al. Diffusion tensor imaging of human Achilles tendon by stimulated echo readout-segmented EPI (ste-RS-EPI). Magn Reson Med. 2018;80(6):2464-2474. doi:10.1002/mrm.27220
13. Wang N, Mirando AJ, Cofer G, Qi Y, Hilton MJ, Johnson GA. Diffusion tractography of the rat knee at microscopic resolution. Magn Reson Med. 2019;81(6):3775-3786. doi:10.1002/mrm.27652
14. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. Fsl. Neuroimage. 2012;62(2):782-790. doi:10.1016/j.neuroimage.2011.09.015
15. Jbabdi S, Sotiropoulos SN, Savio AM, Graña M, Behrens TEJ. Model-based analysis of multishell diffusion MR data for tractography: How to get over fitting problems. Magn Reson Med. Published online 2012. doi:10.1002/mrm.24204
16. Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. Published online 2002. doi:10.1002/mrm.10171
Figure 1. Diffusion-weighted scans of the left knee
Single slices for each diffusion weighted scans acquired (protocols A, B and C; see Table 1) highlight the anterior (red arrow) and posterior (yellow arrow) cruciate ligaments with minimal distortions due to susceptibility artifacts within the intercondylar notch and adequate signal. The different diffusion weightings (b = 0, 400, 800 s/mm2) are shown for each acquisition, when available.
Figure 3. Three-dimensional high resolution structural imaging of the left knee
Three views (sagittal, coronal and axial) of the Double Echo Steady State (DESS) scan are shown highlighting the healthy anterior cruciate ligament (ACL) for this patient (top). The middle and bottom views show the placement of the region of interest seeds within the tibia and femur insertions of the ACL (green), as well as the manual segmentation of the ligament (blue) used for assessment of the tractography outputs.
Figure 4. Signal to noise analysis
The signal to noise ratio (SNR) is plotted for each diffusion gradient directions, for each diffusion-weighted imaging protocol acquired (A, B and C; see Table 1). The volume 0 represents the b0 volume, for each acquisition, hence the higher SNR across each plot. The red dotted line represents the mean SNR for that protocol. (a) DTI A, (b) DTI B and (c) DTI C.
Figure 5. Results from the fiber-based probabilistic tractography and Dice Coefficient analysis
Sagittal slices of the diffusion weighted images (grayscale) are displayed and overlaid with the resampled regions of interest (green, see Figure 2), as well as the reconstructed anterior cruciate ligament (cyan blue), estimated based on fiber-based probabilistic tractography. Both segmentation reconstructions are shown including voxels traversed by the two (left), or either (right), tractograms.