We propose an Adversarial Robust Training (ART) strategy to overcome the problem with accelerated MRI models, which are prone to missing small yet clinically relevant features. We introduced small, difficult to reconstruct synthetic features to undersampled MRIs and encouraged their reconstruction through robust training. To assess generalizability of our technique to real world applications, we annotated morphological features relevant to musculoskeletal disease diagnosis on images in the FastMRI dataset and tested ART. Overall, the approach has potential to reduce network instability and improve reliability and fidelity in image reconstruction.
1 Recht, M.P., Zbontar, J., Sodickson, D.K., Knoll, F., Yakubova, N., Sriram, A., Murrell, T., Defazio, A., Rabbat, M., Rybak, L. and Kline, M., 2020. Using Deep Learning to Accelerate Knee MRI at 3 T: Results of an Interchangeability Study. American Journal of Roentgenology, 215(6), pp.1421-1429.
2 Subhas, N., Li, H., Yang, M., Winalski, C.S., Polster, J., Obuchowski, N., Mamoto, K., Liu, R., Zhang, C., Huang, P. and Gaire, S.K., 2020. Diagnostic interchangeability of deep convolutional neural networks reconstructed knee MR images: preliminary experience. Quantitative Imaging in Medicine and Surgery, 10(9), p.1748.
3 Hammernik, K. and Knoll, F., 2020. Machine learning for image reconstruction. In Handbook of Medical Image Computing and Computer Assisted Intervention (pp. 25-64). Academic Press.
4 Schlemper, J., Qin, C., Duan, J., Summers, R.M. and Hammernik, K., 2019. $\Sigma $-net: Ensembled Iterative Deep Neural Networks for Accelerated Parallel MR Image Reconstruction. arXiv preprint arXiv:1912.05480.
5 Putzky, P. and Welling, M., 2019. Invert to learn to invert. In Advances in Neural Information Processing Systems (pp. 446-456).
6 Pezzotti, N., de Weerdt, E., Yousefi, S., Elmahdy, M.S., van Gemert, J., Schülke, C., Doneva, M., Nielsen, T., Kastryulin, S., Lelieveldt, B.P. and van Osch, M.J., 2019. Adaptive-CS-Net: fastMRI with adaptive intelligence. arXiv preprint arXiv:1912.12259.
7 Pezzotti, N., Yousefi, S., Elmahdy, M.S., Van Gemert, J.H.F., Schuelke, C., Doneva, M., Nielsen, T., Kastryulin, S., Lelieveldt, B.P., Van Osch, M.J. and De Weerdt, E., 2020. An Adaptive Intelligence Algorithm for Undersampled Knee MRI Reconstruction. IEEE Access, 8, pp.204825-204838.
8 Wang, P., Chen, E.Z., Chen, T., Patel, V.M. and Sun, S., 2019. Pyramid Convolutional RNN for MRI Reconstruction. arXiv preprint arXiv:1912.00543.
9 Cohen, J.P., Luck, M. and Honari, S., 2018, September. Distribution matching losses can hallucinate features in medical image translation. In International conference on medical image computing and computer-assisted intervention (pp. 529-536). Springer, Cham.
10 http://FastMRI.med.nyu.edu/
11 Peterfy, C.G., Guermazi, A., Zaim, S., Tirman, P.F.J., Miaux, Y., White, D., Kothari, M., Lu, Y., Fye, K., Zhao, S. and Genant, H.K., 2004. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthritis and cartilage, 12(3), pp.177-190.
12 McAlindon, T.E., Bannuru, R., Sullivan, M.C., Arden, N.K., Berenbaum, F., Bierma-Zeinstra, S.M., Hawker, G.A., Henrotin, Y., Hunter, D.J., Kawaguchi, H. and Kwoh, K., 2014. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthritis and cartilage, 22(3), pp.363-388.
13 Cheng, K., Calivá, F., Shah, R., Han, M., Majumdar, S. and Pedoia, V., 2020, September. Addressing the false negative problem of deep learning MRI reconstruction models by adversarial attacks and robust training. In Medical Imaging with Deep Learning (pp. 121-135). PMLR.
14 Antun, V., Renna, F., Poon, C., Adcock, B. and Hansen, A.C., 2020. On instabilities of deep learning in image reconstruction and the potential costs of AI. Proceedings of the National Academy of Sciences.
15 Zbontar, J., Knoll, F., Sriram, A., Murrell, T., Huang, Z., Muckley, M.J., Defazio, A., Stern, R., Johnson, P., Bruno, M. and Parente, M., 2018. fastMRI: An open dataset and benchmarks for accelerated MRI. arXiv preprint arXiv:1811.08839.
16 Ronneberger, O., Fischer, P. and Brox, T., 2015, October. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham.
17 Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J. and Keutzer, K., 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360.
18 Ghomrawi, H.M.K., Mushlin, A.I., Kang, R., Banerjee, S., Singh, J.A., Sharma, L., Flink, C., Nevitt, M., Neogi, T. and Riddle, D.L., 2020. Examining timeliness of Total knee replacement among patients with knee osteoarthritis in the US: results from the OAI and MOST longitudinal cohorts. JBJS, 102(6), pp.468-476.