Quantitative Susceptibility Mapping (QSM) is a post-processing technique applied to gradient-echo phase data. QSM generally requires a signal mask to identify reliable phase values before reconstruction. Most QSM pipelines do not include masking procedures, and often suggest masking techniques that introduce artefacts, work only in the human brain, and lose critical information, especially near strong susceptibility sources. We propose two novel echo-dependent masking strategies and find that they significantly reduce streaking artefacts, particularly surrounding strong sources and tissue boundaries in multi-echo data. Our techniques are open-source and implemented in a new framework for automated, scalable, and robust QSM processing.
We thank the participants involved in this study. MB acknowledges funding from Australian Research Council Future Fellowship grant FT140100865 and SR from the Marie Skłodowska-Curie Action MS-fMRI-QSM 794298. This research was conducted by the Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology (project number IC170100035) and funded by the Australian Government. Additional support was provided by the Austrian Science Fund (FWF): 31452 and KLI-646. The authors acknowledge the facilities and scientific and technical assistance of the National Imaging Facility, a National Collaborative Research Infrastructure Strategy (NCRIS) capability, at the Centre for Advanced Imaging, the University of Queensland. We wish to acknowledge QCIF for its support in this research by providing high-performance computing and storage resources.
Kieran O’Brien and Jin Jin are employees of Siemens Healthineers in Australia. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationship that could be construed as a conflict of interest.
[1] Ferdinand Schweser, Andreas Deistung, and Jürgen R. Reichenbach. Foundations of MRI phase imaging and processing for Quantitative Susceptibility Mapping (QSM). Zeitschrift für Medizinische Physik, 26(1):6–34, March 2016. doi:10.1016/j.zemedi.2015.10.002.
[2] Lin Chen, Jun Hua, Christopher A. Ross, Shuhui Cai, Peter C. M. van Zijl, and Xu Li. Altered brain iron content and deposition rate in Huntington’s disease as indicated by quantitative susceptibility MRI. Journal of Neuroscience Research, 97(4):467–479, 2019. doi:10.1002/jnr.24358.
[3] Christian Langkammer, Tian Liu, Michael Khalil, Christian Enzinger, Margit Jehna, Siegrid Fuchs, Franz Fazekas, Yi Wang, and Stefan Ropele. Quantitative Susceptibility Mapping in Multiple Sclerosis. Radiology, 267(2):551–559, May 2013. doi:10.1148/radiol.12120707.
[4] Weiwei Chen, Susan A. Gauthier, Ajay Gupta, Joseph Comunale, Tian Liu, Shuai Wang, Mengchao Pei, David Pitt, and Yi Wang. Quantitative Susceptibility Mapping of Multiple Sclerosis Lesions at Various Ages. Radiology, 271(1):183–192, November 2013. doi:10.1148/radiol.13130353.
[5] Sarah Eskreis-Winkler, Kofi Deh, Ajay Gupta, Tian Liu, Cynthia Wisnieff, Moonsoo Jin, Susan A. Gauthier, Yi Wang, and Pascal Spincemaille. Multiple Sclerosis lesion geometry in quantitative susceptibility mapping (QSM) and phase imaging. Journal of Magnetic Resonance Imaging, 42(1):224–229, 2015. doi:10.1002/jmri.24745.
[6] Ferdinand Schweser, Ana Luiza Raffaini Duarte Martins, Jesper Hagemeier, Fuchun Lin, Jannis Hanspach, Bianca Weinstock-Guttman, Simon Hametner, Niels Bergsland, Michael G. Dwyer, and Robert Zivadinov. Mapping of thalamic magnetic susceptibility in multiple sclerosis indicates decreasing iron with disease duration: A proposed mechanistic relationship between inflammation and oligodendrocyte vitality. NeuroImage, 167:438–452, February 2018. doi:10.1016/j.neuroimage.2017.10.063.
[7] Scott Ayton, Amir Fazlollahi, Pierrick Bourgeat, Parnesh Raniga, Amanda Ng, Yen Ying Lim, Ibrahima Diouf, Shawna Farquharson, Jurgen Fripp, David Ames, James Doecke, Patricia Desmond, Roger Ordidge, Colin L. Masters, Christopher C. Rowe, Paul Maruff, Victor L. Villemagne, the Australian Imaging Biomarkers and Lifestyle (AIBL) Research Group, Olivier Salvado, and Ashley I. Bush. Cerebral quantitative susceptibility mapping predicts amyloid-β-related cognitive decline. Brain, 140(8):2112–2119, August 2017. doi:10.1093/brain/awx137.
[8] Netherlands Brain Bank, Solveig Tiepolt, Andreas Schäfer, Michael Rullmann, Elisabeth Roggenhofer, Hermann-Josef Gertz, Matthias L. Schroeter, Marianne Patt, Pierre-Louis Bazin, Thies H. Jochimsen, Robert Turner, Osama Sabri, and Henryk Barthel. Quantitative Susceptibility Mapping of Amyloid-β Aggregates in Alzheimer’s Disease with 7T MR. Journal of Alzheimer’s Disease, 64(2):393–404, June 2018. doi:10.3233/JAD-180118.
[9] Julio Acosta-Cabronero, Arturo Cardenas-Blanco, Matthew J. Betts, Michaela Butryn, Jose P. Valdes-Herrera, Imke Galazky, and Peter J. Nestor. The whole-brain pattern of magnetic susceptibility perturbations in Parkinson’s disease. Brain, 140(1):118–131, January 2017. doi:10.1093/brain/aww278.
[10] Christian Langkammer, Lukas Pirpamer, Stephan Seiler, Andreas Deistung, Ferdinand Schweser, Sebastian Franthal, Nina Homayoon, Petra Katschnig-Winter, Mariella Koegl-Wallner, Tamara Pendl, Eva Maria Stoegerer, Karoline Wenzel, Franz Fazekas, Stefan Ropele, Jürgen Rainer Reichenbach, Reinhold Schmidt, and Petra Schwingenschuh. Quantitative Susceptibility Mapping in Parkinson’s Disease. PLOS ONE, 11(9):e0162460, September 2016. doi:10.1371/journal.pone.0162460.
[11] Ramin Jafari, Sujit Sheth, Pascal Spincemaille, Thanh D. Nguyen, Martin R. Prince, Yan Wen, Yihao Guo, Kofi Deh, Zhe Liu, Daniel Margolis, Gary M. Brittenham, Andrea S. Kierans, and Yi Wang. Rapid automated liver quantitative susceptibility mapping. Journal of Magnetic Resonance Imaging, 50(3):725–732, 2019. doi:10.1002/jmri.26632.
[12] Samir D. Sharma, Diego Hernando, Debra E. Horng, and Scott B. Reeder. Quantitative susceptibility mapping in the abdomen as an imaging biomarker of hepatic iron overload. Magnetic Resonance in Medicine, 74(3):673–683, 2015. doi:10.1002/mrm.25448.
[13] Sina Straub, Julian Emmerich, Heinz-Peter Schlemmer, Klaus H. Maier-Hein, Mark E. Ladd, Matthias C. Röthke, David Bonekamp, and Frederik B. Laun. Mask-Adapted Background Field Removal for Artifact Reduction in Quantitative Susceptibility Mapping of the Prostate. Tomography, 3(2):96–100, June 2017. doi:10.18383/j.tom.2017.00005.
[14] Hongjiang Wei, Russell Dibb, Kyle Decker, NianWang, Yuyao Zhang, Xiaopeng Zong, Weili Lin, Daniel B. Nissman, and Chunlei Liu. Investigating magnetic susceptibility of human knee joint at 7 Tesla. Magnetic Resonance in Medicine, 78(5):1933–1943, 2017. doi:10.1002/mrm.26596.
[15] Stephen M. Smith. Fast robust automated brain extraction. Human Brain Mapping, 17(3):143–155,2002. doi:10.1002/hbm.10062.
[16] Hongjiang Wei, Russell Dibb, Yan Zhou, Yawen Sun, Jianrong Xu, Nian Wang, and Chunlei Liu. Streaking artifact reduction for quantitative susceptibility mapping of sources with large dynamic range. NMR in Biomedicine, 28(10):1294–1303, 2015. doi:10.1002/nbm.3383.
[17] Korbinian Eckstein, Barbara Dymerska, Beata Bachrata, Wolfgang Bogner, Karin Poljanc, Siegfried Trattnig, and Simon Daniel Robinson. Computationally Efficient Combination of Multichannel Phase Data From Multi-echo Acquisitions (ASPIRE). Magnetic Resonance in Medicine, 79(6):2996–3006, 2018. doi:10.1002/mrm.26963.
[18] José P. Marques, Christian Langkammer, Jakob Meineke, Carlos Milovic, Berkin Bilgic, and Ferdinand Schweser. QSM Reconstruction Challenge 2.0, 2019. listsnu.org/qsm-challenge.
[19] Christian Langkammer, Kristian Bredies, Benedikt A.Poser, Markus Barth, Gernot Reishofer, Audrey Pei-wen Fan, Berkin Bilgic, Franz Fazekas, Caterina Mainero, and Stefan Ropele. Fast quantitative susceptibility mapping using 3D EPI and total generalized variation. NeuroImage, 111:622–630, May 2015. doi:10.1016/j.neuroimage.2015.02.041.
[20] Emma Biondetti, Anita Karsa, David L Thomas, and Karin Shmueli. Investigating the accuracy and precision of TE-dependent versus multi-echo QSM using Laplacian-based methods at 3T. Magnetic Resonance in Medicine, 2020. doi:10.1002/mrm.28331.
[21] Andrew L. Janke and Jeremy F. P. Ullmann. Robust methods to create ex vivo minimum deformation atlases for brain mapping. Methods, 73, February 2015. doi:10.1016/j.ymeth.2015.01.005.