A model and corresponding solver for estimating sub-voxel paramagnetic and diamagnetic susceptibility components are validated based on the temperature dependence of magnetic susceptibility. Two pieces of brainstem sample were scanned under various temperature conditions to test the properties of the separated paramagnetic and diamagnetic components.
(1) Liu, C.; Wei, H.; Gong, N.-J.; Cronin, M.; Dibb, R.; Decker, K. Quantitative Susceptibility Mapping: Contrast Mechanisms and Clinical Applications. Tomography 2015, 1 (1), 3–17. https://doi.org/10.18383/j.tom.2015.00136.
(2) Guan, X.; Huang, P.; Zeng, Q.; Liu, C.; Wei, H.; Xuan, M.; Gu, Q.; Xu, X.; Wang, N.; Yu, X.; Luo, X.; Zhang, M. Quantitative Susceptibility Mapping as a Biomarker for Evaluating White Matter Alterations in Parkinson’s Disease. Brain Imaging Behav 2019, 13 (1), 220–231. https://doi.org/10.1007/s11682-018-9842-z.
(3) He, N.; Ling, H.; Ding, B.; Huang, J.; Zhang, Y.; Zhang, Z.; Liu, C.; Chen, K.; Yan, F. Region-Specific Disturbed Iron Distribution in Early Idiopathic Parkinson’s Disease Measured by Quantitative Susceptibility Mapping. Human Brain Mapping 2015, 36 (11), 4407–4420. https://doi.org/10.1002/hbm.22928.
(4) Wisnieff, C.; Ramanan, S.; Olesik, J.; Gauthier, S.; Wang, Y.; Pitt, D. Quantitative Susceptibility Mapping (QSM) of White Matter Multiple Sclerosis Lesions: Interpreting Positive Susceptibility and the Presence of Iron. Magnetic Resonance in Medicine 2015, 74 (2), 564–570. https://doi.org/10.1002/mrm.25420.
(5) Zhang, Y.; Gauthier, S. A.; Gupta, A.; Comunale, J.; Chiang, G. C.-Y.; Zhou, D.; Chen, W.; Giambrone, A. E.; Zhu, W.; Wang, Y. Longitudinal Change in Magnetic Susceptibility of New Enhanced Multiple Sclerosis (MS) Lesions Measured on Serial Quantitative Susceptibility Mapping (QSM). Journal of Magnetic Resonance Imaging 2016, 44 (2), 426–432. https://doi.org/10.1002/jmri.25144.
(6) Gong, N.-J.; Dibb, R.; Bulk, M.; van der Weerd, L.; Liu, C. Imaging Beta Amyloid Aggregation and Iron Accumulation in Alzheimer’s Disease Using Quantitative Susceptibility Mapping MRI. NeuroImage 2019, 191, 176–185. https://doi.org/10.1016/j.neuroimage.2019.02.019.
(7) Wei, H.; Xie, L.; Dibb, R.; Li, W.; Decker, K.; Zhang, Y.; Johnson, G. A.; Liu, C. Imaging Whole-Brain Cytoarchitecture of Mouse with MRI-Based Quantitative Susceptibility Mapping. NeuroImage 2016, 137, 107–115. https://doi.org/10.1016/j.neuroimage.2016.05.033.
(8) Zhang, Y.; Wei, H.; Cronin, M. J.; He, N.; Yan, F.; Liu, C. Longitudinal Atlas for Normative Human Brain Development and Aging over the Lifespan Using Quantitative Susceptibility Mapping. NeuroImage 2018, 171, 176–189. https://doi.org/10.1016/j.neuroimage.2018.01.008.
(9) Zhang, Y.; Wei, H.; Sun, Y.; Cronin, M. J.; He, N.; Xu, J.; Zhou, Y.; Liu, C. Quantitative Susceptibility Mapping (QSM) As a Means to Monitor Cerebral Hematoma Treatment. J Magn Reson Imaging 2018, 48 (4), 907–915. https://doi.org/10.1002/jmri.25957.
(10) Ayton, S.; Wang, Y.; Diouf, I.; Schneider, J. A.; Brockman, J.; Morris, M. C.; Bush, A. I. Brain Iron Is Associated with Accelerated Cognitive Decline in People with Alzheimer Pathology. Molecular Psychiatry 2020, 25
(11), 2932–2941. https://doi.org/10.1038/s41380-019-0375-7.(11) Duce, J. A.; Tsatsanis, A.; Cater, M. A.; James, S. A.; Robb, E.; Wikhe, K.; Leong, S. L.; Perez, K.; Johanssen, T.; Greenough, M. A.; Cho, H.-H.; Galatis, D.; Moir, R. D.; Masters, C. L.; McLean, C.; Tanzi, R. E.; Cappai, R.; Barnham, K. J.; Ciccotosto, G. D.; Rogers, J. T.; Bush, A. I. Iron-Export Ferroxidase Activity of β-Amyloid Precursor Protein Is Inhibited by Zinc in Alzheimer’s Disease. Cell 2010, 142 (6), 857–867. https://doi.org/10.1016/j.cell.2010.08.014.
(12) Telling, N. D.; Everett, J.; Collingwood, J. F.; Dobson, J.; van der Laan, G.; Gallagher, J. J.; Wang, J.; Hitchcock, A. P. Iron Biochemistry Is Correlated with Amyloid Plaque Morphology in an Established Mouse Model of Alzheimer’s Disease. Cell Chemical Biology 2017, 24 (10), 1205-1215.e3. https://doi.org/10.1016/j.chembiol.2017.07.014.
(13) Schweser, F.; Deistung, A.; Lehr, B.; Sommer, K.; Reichenbach, J. SEMI-TWInS: Simultaneous Extraction of Myelin and Iron Using a T2*-Weighted Imaging Sequence. In Proceedings of the 19th Meeting of the International Society for Magnetic Resonance in Medicine; 2011; p 120.
(14) Lee, J.; Nam, Y.; Choi, J. Y.; Shin, H.; Hwang, T.; Lee, J. Separating Positive and Negative Susceptibility Sources in QSM. ISMRM, HONOLULU, HI, USA, MRM.[Google Scholar] 2017.
(15) Birkl, C.; Langkammer, C.; Krenn, H.; Goessler, W.; Ernst, C.; Haybaeck, J.; Stollberger, R.; Fazekas, F.; Ropele, S. Iron Mapping Using the Temperature Dependency of the Magnetic Susceptibility. Magnetic Resonance in Medicine2015, 73 (3), 1282–1288. https://doi.org/10.1002/mrm.25236.
(16) Shatil, A. S.; Matsuda, K. M.; Figley, C. R. A Method for Whole Brain Ex Vivo Magnetic Resonance Imaging with Minimal Susceptibility Artifacts. Front. Neurol. 2016, 7. https://doi.org/10.3389/fneur.2016.00208.
(17) Schofield, M. A.; Zhu, Y. Fast Phase Unwrapping Algorithm for Interferometric Applications. Opt Lett 2003, 28(14), 1194–1196. https://doi.org/10.1364/ol.28.001194.
(18) Li, W.; Wu, B.; Liu, C. Quantitative Susceptibility Mapping of Human Brain Reflects Spatial Variation in Tissue Composition. Neuroimage 2011, 55 (4), 1645–1656. https://doi.org/10.1016/j.neuroimage.2010.11.088.
(19) Wu, B.; Li, W.; Guidon, A.; Liu, C. Whole Brain Susceptibility Mapping Using Compressed Sensing. Magnetic Resonance in Medicine 2012, 67 (1), 137–147. https://doi.org/10.1002/mrm.23000.
(20) Wei, H.; Dibb, R.; Zhou, Y.; Sun, Y.; Xu, J.; Wang, N.; Liu, C. Streaking Artifact Reduction for Quantitative Susceptibility Mapping of Sources with Large Dynamic Range. NMR Biomed 2015, 28 (10), 1294–1303. https://doi.org/10.1002/nbm.3383.(21) STI Suite V3.0 https://people.eecs.berkeley.edu/~chunlei.liu/software.html.
(22) Thermal Expansion. Wikipedia; 2020.
(23) Rabin, Y.; Plitz, J. Thermal Expansion of Blood Vessels and Muscle Specimens Permeated with DMSO, DP6, and VS55 at Cryogenic Temperatures. Ann Biomed Eng 2005, 33 (9), 1213–1228. https://doi.org/10.1007/s10439-005-5364-0.