This study explored the clinical value of volumetric apparent diffusion coefficient (ADC) histogram analysis and Vesical Imaging Reporting and Data System (VI-RADS) in differentiating muscle-invasive bladder cancer (MIBC) from non-muscle-invasive bladder cancer (NMIBC), and demonstrated that both are helpful and the volumetric ADC histogram can provide additional value to VI-RADS.
1. Antoni, S., et al., Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends. Eur Urol, 2017. 71(1): p. 96-108.
2. Cumberbatch, M.G.K., et al., Epidemiology of Bladder Cancer: A Systematic Review and Contemporary Update of Risk Factors in 2018. Eur Urol, 2018. 74(6): p. 784-795.
3. Gregg, J.R., P. Dahm, and S.S. Chang, Guideline-based management of non-muscle invasive bladder cancer. Indian J Urol, 2015. 31(4): p. 320-6.
4. Jordan, B. and J.J. Meeks, T1 bladder cancer: current considerations for diagnosis and management. Nat Rev Urol, 2019. 16(1): p. 23-34.
5. Babjuk, M., et al., EAU Guidelines on Non-Muscle-invasive Urothelial Carcinoma of the Bladder: Update 2016. Eur Urol, 2017. 71(3): p. 447-461.
6. Babjuk, M., et al., European Association of Urology Guidelines on Non-muscle-invasive Bladder Cancer (TaT1 and Carcinoma In Situ) - 2019 Update. Eur Urol, 2019. 76(5): p. 639-657.
7. Wang, H., et al., Radiomics analysis of multiparametric MRI for the preoperative evaluation of pathological grade in bladder cancer tumors. Eur Radiol, 2019. 29(11): p. 6182-6190.
8. Yoshida, S., et al., DWI as an Imaging Biomarker for Bladder Cancer. AJR Am J Roentgenol, 2017. 208(6): p. 1218-1228.
9. Yoshida, S., et al., Role of diffusion-weighted magnetic resonance imaging as an imaging biomarker of urothelial carcinoma. Int J Urol, 2014. 21(12): p. 1190-200.
10. Padhani, A.R., et al., Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia, 2009. 11(2): p. 102-25.
11. Takeuchi, M., et al., MR imaging of urinary bladder cancer for T-staging: a review and a pictorial essay of diffusion-weighted imaging. J Magn Reson Imaging, 2013. 38(6): p. 1299-309.
12. Zhao, Q., et al., Differentiation between idiopathic granulomatous mastitis and invasive breast carcinoma, both presenting with non-mass enhancement without rim-enhanced masses: The value of whole-lesion histogram and texture analysis using apparent diffusion coefficient. Eur J Radiol, 2020. 123: p. 108782.
13. Zou, X., et al., Volumetric Apparent Diffusion Coefficient Histogram Analysis in Differentiating Intrahepatic Mass-Forming Cholangiocarcinoma From Hepatocellular Carcinoma. J Magn Reson Imaging, 2019. 49(4): p. 975-983.
14. Kondo, M. and Y. Uchiyama, Apparent diffusion coefficient histogram analysis for prediction of prognosis in glioblastoma. J Neuroradiol, 2018. 45(4): p. 236-241.
15. Shindo, T., et al., Histogram Analysis of Apparent Diffusion Coefficient in Differentiating Pancreatic Adenocarcinoma and Neuroendocrine Tumor. Medicine (Baltimore), 2016. 95(4): p. e2574.
16. Suo, S.T., et al., Histogram analysis of apparent diffusion coefficient at 3.0 T in urinary bladder lesions: correlation with pathologic findings. Acad Radiol, 2014. 21(8): p. 1027-34.
17. Kobayashi, S., et al., Diagnostic performance of diffusion-weighted magnetic resonance imaging in bladder cancer: potential utility of apparent diffusion coefficient values as a biomarker to predict clinical aggressiveness. Eur Radiol, 2011. 21(10): p. 2178-86.
18. Panebianco, V., et al., An evaluation of morphological and functional multi-parametric MRI sequences in classifying non-muscle and muscle invasive bladder cancer. Eur Radiol, 2017. 27(9): p. 3759-3766.
19. Wang, H., et al., Multiparametric MRI for Bladder Cancer: Validation of VI-RADS for the Detection of Detrusor Muscle Invasion. Radiology, 2019. 291(3): p. 668-674.
20. Takeuchi, M., et al., Urinary bladder cancer: diffusion-weighted MR imaging--accuracy for diagnosing T stage and estimating histologic grade. Radiology, 2009. 251(1): p. 112-21.
21. Ueno, Y., et al., Diagnostic Accuracy and Interobserver Agreement for the Vesical Imaging-Reporting and Data System for Muscle-invasive Bladder Cancer: A Multireader Validation Study. Eur Urol, 2019. 76(1): p. 54-56.
22. Yajima, S., et al., Usefulness of the inchworm sign on DWI for predicting pT1 bladder cancer progression. Eur Radiol, 2019. 29(7): p. 3881-3888.
23. Arévalo, N., R. Méndez, and J. Barrera, "Inchworm sign" in urinary bladder cancer. Abdom Radiol (NY), 2018. 43(12): p. 3509-3510.
24. Li, H., et al., Quantitative Assessment of Bladder Cancer Reflects Grade and Recurrence: Comparing of Three Methods of Positioning Region of Interest for ADC Measurements at Diffusion-weighted MR Imaging. Acad Radiol, 2019. 26(9): p. 1148-1153.
25. Rosenkrantz, A.B., et al., Whole-lesion diffusion metrics for assessment of bladder cancer aggressiveness. Abdom Imaging, 2015. 40(2): p. 327-32.
26. Kobayashi, S., et al., Apparent diffusion coefficient value reflects invasive and proliferative potential of bladder cancer. J Magn Reson Imaging, 2014. 39(1): p. 172-8.
27. Avcu, S., et al., The value of diffusion-weighted MRI in the diagnosis of malignant and benign urinary bladder lesions. Br J Radiol, 2011. 84(1006): p. 875-82.
28. Wang, F., et al., Intravoxel incoherent motion diffusion-weighted imaging in assessing bladder cancer invasiveness and cell proliferation. J Magn Reson Imaging, 2018. 47(4): p. 1054-1060.
29. Tang, L. and X.J. Zhou, Diffusion MRI of cancer: From low to high b-values. J Magn Reson Imaging, 2019. 49(1): p. 23-40.
30. Baek, H.J., et al., Percent change of perfusion skewness and kurtosis: a potential imaging biomarker for early treatment response in patients with newly diagnosed glioblastomas. Radiology, 2012. 264(3): p. 834-43.
31. O'Brien, T., et al., Different angiogenic pathways characterize superficial and invasive bladder cancer. Cancer Res, 1995. 55(3): p. 510-3.
32. Huang, L., et al., The Diagnostic Value of MR Imaging in Differentiating T Staging of Bladder Cancer: A Meta-Analysis. Radiology, 2018. 286(2): p. 502-511.
33. Zhang, X., et al., Radiomics assessment of bladder cancer grade using texture features from diffusion-weighted imaging. J Magn Reson Imaging, 2017. 46(5): p. 1281-1288.
34. Xu, S., et al., Combining DWI radiomics features with transurethral resection promotes the differentiation between muscle-invasive bladder cancer and non-muscle-invasive bladder cancer. Eur Radiol, 2020. 30(3): p. 1804-1812.
35. Wang, F., et al., Diffusion kurtosis imaging to assess correlations with clinicopathologic factors for bladder cancer: a comparison between the multi-b value method and the tensor method. Eur Radiol, 2019. 29(8): p. 4447-4455.
36. Wang, Y., et al., Comparison of the Diagnostic Value of Monoexponential, Biexponential, and Stretched Exponential Diffusion-weighted MRI in Differentiating Tumor Stage and Histological Grade of Bladder Cancer. Acad Radiol, 2019. 26(2): p. 239-246.