Early and accurate placental insufficiency assessment is of a great importance. Here we comprehensively assessed placental perfusion and structure, and fetal brain and body volumes, in normal fetuses and in cases with fetal growth restriction (FGR) caused by placental insufficiency, at late gestational ages (GA=31-34 weeks). Increased Placental Blood Flow and Arterial Transit Time were detected in normal cases compared to earlier GA reported previously. Significant differences were found in several placental and fetal characteristics between normal and FGR cases. This study emphasizes the importance of multi-parametric assessment of fetuses to enable identification of high risks for FGR.
1. Leitner, Y., Fattal-Valevski, A., Geva, R., Eshel, R., Toledano-Alhadef, H., Rotstein, M., Bassan, H., Radianu, B., Bitchonsky, O., Jaffa, A.J., et al. (2007). Neurodevelopmental outcome of children with intrauterine growth retardation: a longitudinal, 10-year prospective study. J Child Neurol 22, 580-587.
2. Pardi, G., Marconi, A.M., and Cetin, I. (2002). Placental-fetal interrelationship in IUGR fetuses--a review. Placenta 23 Suppl A, S136-141.
3. Harteveld, A.A., Hutter, J., Franklin, S.L., Jackson, L.H., Rutherford, M., Hajnal, J.V., van Osch, M.J.P., Bos, C., and De Vita, E. (2020). Systematic evaluation of velocity-selective arterial spin labeling settings for placental perfusion measurement. Magn Reson Med 84, 1828-1843.
4. Zun, Z., Zaharchuk, G., Andescavage, N.N., Donofrio, M.T., and Limperopoulos, C. (2017). Non-Invasive Placental Perfusion Imaging in Pregnancies Complicated by Fetal Heart Disease Using Velocity-Selective Arterial Spin Labeled MRI. Scientific reports 7, 16126.
5. Shao, X., Liu, D., Martin, T., Chanlaw, T., Devaskar, S.U., Janzen, C., Murphy, A.M., Margolis, D., Sung, K., and Wang, D.J.J. (2018). Measuring human placental blood flow with multidelay 3D GRASE pseudocontinuous arterial spin labeling at 3T. Journal of magnetic resonance imaging : JMRI 47, 1667-1676.
6. Baschat, A.A. (2010). Fetal growth restriction - from observation to intervention. Journal of perinatal medicine 38, 239-246.
7. Gal Dudovitch, D.L.-S., Liat Ben Sira, Elka Miller, Dafna Ben Bashat, Leo Joskowicz. (2020). Deep Learning Automatic Fetal Structures Segmentation in MRI Scans with Few Annotated Datasets. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020, 365-374.
8. Kiserud, T., Piaggio, G., Carroli, G., Widmer, M., Carvalho, J., Neerup Jensen, L., Giordano, D., Cecatti, J.G., Abdel Aleem, H., Talegawkar, S.A., et al. (2017). The World Health Organization Fetal Growth Charts: A Multinational Longitudinal Study of Ultrasound Biometric Measurements and Estimated Fetal Weight. PLoS medicine 14, e1002220.
9. Link, D., Braginsky, M.B., Joskowicz, L., Ben Sira, L., Harel, S., Many, A., Tarrasch, R., Malinger, G., Artzi, M., Kapoor, C., et al. (2018). Automatic Measurement of Fetal Brain Development from Magnetic Resonance Imaging: New Reference Data. Fetal diagnosis and therapy 43, 113-122.
10. Shinozuka, N., Okai, T., Kohzuma, S., Mukubo, M., Shih, C.T., Maeda, T., Kuwabara, Y., and Mizuno, M. (1987). Formulas for fetal weight estimation by ultrasound measurements based on neonatal specific gravities and volumes. Am J Obstet Gynecol 157, 1140-1145.
11. Link, D., Many, A., Ben Sira, L., Tarrasch, R., Bak, S., Kidron, D., Gordon, Z., Yagel, S., Harel, S., and Ben Bashat, D. (2020). Placental vascular tree characterization based on ex-vivo MRI with a potential application for placental insufficiency assessment. Placenta 101, 252-260.
12. Konje, J.C., Kaufmann, P.,
Bell, S.C., and Taylor, D.J. (2001). A longitudinal study of quantitative
uterine blood flow with the use of color power angiography in appropriate for
gestational age pregnancies. Am J Obstet Gynecol 185, 608-613.