Diffusion weighting is achieved by the application of external field gradients typically for tens of milliseconds, during which the signal substantially decays due to inherent T2 relaxation. This work focuses on the benefits of strong gradients - here provided by a gradient head insert - for high SNR and short TE diffusion imaging at 7T. Proof-of-principle images show that a short TE (21 ms) at a b-value of 1000 s/mm2 is achievable at 7T using an EPI-readout.
[1] K. Setsompop, R. Kimmlingen, E. Eberlein, T. Witzel, J. Cohen-Adad, J. A. McNab,B. Keil, M. D. Tisdall, P. Hoecht, P. Dietz, S. F. Cauley, V. Tountcheva, V. Matschl, V. H.Lenz, K. Heberlein, A. Potthast, H. Thein, J. Van Horn, A. Toga, F. Schmitt, D. Lehne,B. R. Rosen, V. Wedeen, and L. L. Wald. Pushing the limits of in vivo diffusion MRI forthe Human Connectome Project. NeuroImage, 80:220–233, 2013. ISSN 10538119.
[2] D.K. Jones, D.C. Alexander, R. Bowtell, M. Cercignani, F. Dell’Acqua, D.J. McHugh, K.L.Miller, M. Palombo, G.J.M. Parker, U.S. Rudrapatna, and C.M.W. Tax. Microstructuralimaging of the human brain with a ‘super-scanner’: 10 key advantages of ultra-stronggradients for diffusion MRI.NeuroImage, may 2018. ISSN 1053-8119
[3] M. Weiger, J. Overweg, M. B. Rösler, R. Froidevaux, F. Hennel, B. J. Wilm, A. Penn, U. Sturzenegger, W. Schuth, M. Mathlener, et al. A high-performance gradient insert for rapidand short-T 2 imaging at full duty cycle. Magnetic Resonance in Medicine, 79(6):3256–326
[4] E. T. Tan, Y. Hua, E. W. Fiveland, M. E. Vermilyea, J. E. Piel, K. J.Park, V. B. Ho, and T. K.F. Foo. Peripheral nerve stimulation limits of a highamplitude and slew rate magnetic field gradient coil for neuroimaging. Magnetic Resonance in Medicine, 83(1):352–366, jan 2020
[5] L. Mueller, S. U. Rudrapatna, C. M.W. Tax, R. Wise, and D. K. Jones. Diffusion MRI with b=1000 s/mm2 at TE < 22 ms using single-shot spiral readout and ultra-strong gradients: Implications for microstructure imaging. ISMRM, page 0766, 2019.
[6] C. M.W. Tax, U. S. Rudrapatna, L. Mueller, and D. K. Jones. Characterizing diffusion of myelin water in the living human brain using ultra-strong gradients and spiral readout. ISMRM, page 1115, 2019
[7] S. Moeller, P. P. Kumar, J. Andersson, M. Akcakaya, N. Harel, R. Ma, X. Wu, E. Yacoub, C. Lenglet, and K. Ugurbil. Diffusion imaging in the post HCP era. Journal of Magnetic Resonance Imaging, 2020.
[8] E. Kleban, C. M.W. Tax, U. S. Rudrapatna, D. K. Jones, and R. Bowtell. Strong diffusion gradients allow the separation of intra- and extra-axonal gradient-echo signals in the human brain. NeuroImage, 217:116793, 2020.
[9] T. A. van der Velden, C. C. van Leeuwen, E. R. Huijing, M. Borgo, P. R. Luijten, D. W.J. Klomp, and J. C.W. Siero. A lightweight gradient insert coil for high resolution brain imaging. ISMRM, page 4329, 2017.
[10] J. L.R. Andersson, S. Skare, and J. Ashburner. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage, 20(2):870–888, oct 2003.
[11] O. Ocali and E. Atalar. Ultimate intrinsic signal-to-noise ratio in MRI. Magnetic resonance in medicine, 39(3):462–473, 1998.
[12] E.F Cox and P.A. Gowland. Measuring t2 and t2’ in the brain at 1.5t, 3t and 7t using ahybrid gradient echo-spin echo sequence and epi.ISMRM, page 1411, 2008.
[13] C. M. Collins, W. Liu, B. J. Swift, and M. B. Smith. Combination of optimized transmit arrays and some receive array reconstruction methods can yield homogeneous images at very high frequencies. Magnetic Resonance in Medicine, 54(6):1327–1332, dec 2005.
[14] B. J. Wilm, F. Hennel, M. B. Roesler, M. Weiger, and K. P. Pruessmann. Minimizing the echo time in diffusion imaging using spiral readouts and a head gradient system. Magnetic Resonance in Medicine, 84(6):3117–3127, 2020.