A challenging issue regarding the early diagnosis of the Alzheimer's disease (AD) is the selection of biomarkers. In this study, we aimed to classify cognitively normal elderly regarding the possibility to develop AD based on brain atrophy and neuropsychological scores, and using supervised machine learning algorithms. Our results suggest Naïve-Bayes (NB) classifiers with left postcentral and left middle temporal cortical thickness or right lateral ventricle, right inferior parietal and Corpus Callosum (CC) Mid Posterior volumes can be useful to identify in the early stage the subjects with higher risks to develop AD.
Data were provided by OASIS-3: Principal Investigators: T. Benzinger. D. Marcus. J. Morris; NIH P50AG00561. P30NS09857781. P01AG026276. P01AG003991. R01AG043434. UL1TR000448. R01EB009352.
This work was supported by the Fundação de Apoio à Pesquisa do Estado de São Paulo (FAPESP), process number 2017/22212-0
1. Pais, M. et al. Early diagnosis and treatment of Alzheimer’s disease: New definitions and challenges. Brazilian J. Psychiatry (2020) doi:10.1590/1516-4446-2019-0735.
2. Dubois, B. et al. Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimer’s and Dementia (2016) doi:10.1016/j.jalz.2016.02.002.
3. Nestor, P. J., Scheltens, P. & Hodges, J. R. Advances in the early detection of alzheimer’s disease. Nat. Rev. Neurosci. (2004) doi:10.1038/nrn1433.
4. Park, J. H. et al. Machine learning prediction of incidence of Alzheimer’s disease using large-scale administrative health data. npj Digit. Med. (2020) doi:10.1038/s41746-020-0256-0.
5. Nori, V. S. et al. Machine learning models to predict onset of dementia: A label learning approach. Alzheimer’s Dement. Transl. Res. Clin. Interv. (2019) doi:10.1016/j.trci.2019.10.006.
6. Moradi, E., Pepe, A., Gaser, C., Huttunen, H. & Tohka, J. Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage (2015) doi:10.1016/j.neuroimage.2014.10.002.
7. Kruthika, K. R., Rajeswari & Maheshappa, H. D. Multistage classifier-based approach for Alzheimer’s disease prediction and retrieval. Informatics Med. Unlocked (2019) doi:10.1016/j.imu.2018.12.003.
8. Albright, J. Forecasting the progression of Alzheimer’s disease using neural networks and a novel preprocessing algorithm. Alzheimer’s Dement. Transl. Res. Clin. Interv. (2019) doi:10.1016/j.trci.2019.07.001.
9. Kim, H.-G. et al. Evaluation and Prediction of Early Alzheimer’s Disease Using a Machine Learning-based Optimized Combination-Feature Set on Gray Matter Volume and Quantitative Susceptibility Mapping. Curr. Alzheimer Res. (2020) doi:10.2174/1567205017666200624204427.
10. LaMontagne, P. J. et al. IC-P-164: OASIS-3: LONGITUDINAL NEUROIMAGING, CLINICAL, AND COGNITIVE DATASET FOR NORMAL AGING AND ALZHEIMER’S DISEASE. Alzheimer’s Dement. (2018) doi:10.1016/j.jalz.2018.06.2231.
11. Berg, L. Clinical Dementia Rating (CDR). Psychopharmacol. Bull. (1988).
12. Fischl, B. FreeSurfer. NeuroImage (2012) doi:10.1016/j.neuroimage.2012.01.021.
13. Kursa, M. B., Jankowski, A. & Rudnicki, W. R. Boruta - A system for feature selection. Fundam. Informaticae (2010) doi:10.3233/FI-2010-288.
14. Kursa, M. B. & Rudnicki, W. R. Feature selection with the boruta package. J. Stat. Softw. (2010) doi:10.18637/jss.v036.i11.
15. R Core Team (2019). R: A language and environment for statistical computing. Accessed 1st April 2019 (2019).
16. Zar, J. H. Spearman Rank Correlation. in Encyclopedia of Biostatistics (2005). doi:10.1002/0470011815.b2a15150.
17. Kuhn, M. & Contributions from Jed Wing, Steve Weston, Andre Williams, Chris Keefer, Allan Engelhardt, Tony Cooper, Zachary Mayer, Brenton Kenkel, the R Core Team, Michael Benesty, Reynald Lescarbeau, Andrew Ziem, Luca Scrucca, Yuan Tang, Can Candan, and T. H. caret: Classification and Regression Training. R Packag. version 6.0-79 (2018).
18. Breiman, L. Random forests. Mach. Learn. (2001) doi:10.1023/A:1010933404324.
19. Cortes, C. & Vapnik, V. Support-Vector Networks. Mach. Learn. (1995) doi:10.1023/A:1022627411411.
20. Set, A. Naive Bayes Classifiers. homepages.inf.ed.ac.uk (2009).
21. Peterson, L. K-nearest neighbor. Scholarpedia (2009) doi:10.4249/scholarpedia.1883.
22. Dayhoff, J. E. & DeLeo, J. M. Artificial neural networks: Opening the black box. in Cancer (2001). doi:10.1002/1097-0142(20010415)91:8+<1615::aid-cncr1175>3.0.co;2-l.
23. Refaeilzadeh, P., Tang, L. & Liu, H. Cross-Validation. in Encyclopedia of Database Systems (2009). doi:10.1007/978-0-387-39940-9_565.
24. Yang, H. et al. Study of brain morphology change in Alzheimer’s disease and amnestic mild cognitive impairment compared with normal controls. Gen. Psychiatry (2019) doi:10.1136/gpsych-2018-100005.
25. Reed, T. T., Pierce, W. M., Turner, D. M., Markesbery, W. R. & Allan Butterfield, D. Proteomic identification of nitrated brain proteins in early Alzheimer’s disease inferior parietal lobule. J. Cell. Mol. Med. (2009) doi:10.1111/j.1582-4934.2008.00478.x.
26. Nestor, S. M. et al. Ventricular enlargement as a possible measure of Alzheimer’s disease progression validated using the Alzheimer’s disease neuroimaging initiative database. Brain (2008) doi:10.1093/brain/awn146.
27. Ardekani, B. A., Bachman, A. H., Figarsky, K. & Sidtis, J. J. Corpus callosum shape changes in early Alzheimer’s disease: An MRI study using the OASIS brain database. Brain Struct. Funct. (2014) doi:10.1007/s00429-013-0503-0.
28. Van Schependom, J., Niemantsverdriet, E., Smeets, D. & Engelborghs, S. Callosal circularity as an early marker for Alzheimer’s disease. NeuroImage Clin. (2018) doi:10.1016/j.nicl.2018.05.018.
29. Bachman, A. H., Lee, S. H., Sidtis, J. J. & Ardekani, B. A. Corpus callosum shape and size changes in early Alzheimer’s disease: A longitudinal MRI study using the oasis brain database. J. Alzheimer’s Dis. (2014) doi:10.3233/JAD-131526.