We present a novel method for volumetric left ventricle mesh personalisation from cardiac MR images. The proposed method does not require any ground-truth mesh training data. Additionally, it corrects for slice misalignment and can propagate these correction back to the original image data. The method is expressive enough to capture diverse morphology, and is also differentiable, allowing for direct inclusion in deep-learning pipelines. We demonstrate that our mesh personalisation approach works robustly on both healthy and pathological anatomy.
[1] Corral-Acero, J., Margara, F., Marciniak, M., Rodero, C., Loncaric, F., Feng, Y., Gilbert, A., Fernandes, J.F.,Bukhari, H.A., Wajdan, A., et al.: The ‘digital twin’ to enable the vision of precision cardiology. European Heart Journal. (2020)
[2] Joyce, T., Kozerke, S.: 3D medical image synthesis by factorised representation and deformable model learning.In: International Workshop on Simulation and Synthesis in Medical Imaging. pp. 110–119. Springer (2019)
[3] Abbasi-Sureshjani, S., Amirrajab, S., Lorenz, C., Weese, J., Pluim, J., Breeuwer, M.: 4d semantic cardiacmagnetic resonance image synthesis on xcat anatomical model. arXiv preprint arXiv:2002.07089 (2020)
[4] Duchateau, N., Sermesant, M., Delingette, H., & Ayache, N. (2017). Model-based generation of large databases of cardiac images: synthesis of pathological cine MR sequences from real healthy cases. IEEE transactions on medical imaging, 37(3), 755-766. (2017)
[5] Bai, W., Sinclair, M., Tarroni, G., Oktay, O., Rajchl, M., Vaillant, G., Lee, A.M., Aung, N., Lukaschuk, E.,Sanghvi, M.M., et al.: Human-level CMR image analysis with deep fully convolutional networks (2017)
[6] Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. ACMsiggraph computer graphics21(4), 163–169 (1987)
[7] Villard, B., Grau, V., Zacur, E.: Surface mesh reconstruction from cardiac mri contours. Journal of Imaging4(1), 16 (2018)
[8] Villard, B., Zacur, E., Grau, V.: Isachi: Integrated segmentation and alignment correction for heart images.In: International Workshop on Statistical Atlases and Computational Models of the Heart. pp. 171–180. Springer (2018)
[9] Xu, H., Zacur, E., Schneider, J.E., Grau, V.: Ventricle surface reconstruction from cardiac mr slices using deep learning. In: International Conference on Functional Imaging and Modeling of the Heart. pp. 342–351. Springer (2019)
[10] Joyce, T., Buoso, S., Xu, Y., Kozerke, S.: A Machine Learning Approach to Left Ventricle Mesh Prediction from Multi-Slice MR Images. In: Proceedings of the International Society for Magnetic Resonance in Medicine 28. p. 2230 (2020)
[11] Lunz, S., Li, Y., Fitzgibbon, A., Kushman, N.: Inverse graphics gan: Learning to generate 3d shapes fromunstructured 2d data. arXiv preprint arXiv:2002.12674 (2020)
[12] Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: Learning implicit3d representations without 3d supervision. arXiv preprint arXiv:1912.07372 (2019)
[13] Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional occupancy networks. arXivpreprint arXiv:2003.04618 (2020)
[14] Sawhney, R., Crane, K.: Monte carlo geometry processing: A grid-free approach to pde-based methods onvolumetric domains. ACM Trans. Graph.39(4) (2020)
[15] Yariv, L., Atzmon, M., Lipman, Y.: Universal differentiable renderer for implicit neural representations. arXivpreprint arXiv:2003.09852 (2020)
[16] Buoso, S., Stoeck, C.T., Stimm, J., Kozerke, S.: An MRI image-guided left-ventricular shape model embedding local phys-iological coordinates and directions. In: Proceedings of the International Society for Magnetic Resonance in Medicine 28. p. 2217 (2020)
[17] Buoso, S., Manzoni, A., Alkadhi, H., Plass, A., Quarteroni, A., Kurtcuoglu, V.: Reduced-order modeling ofblood flow for noninvasive functional evaluation of coronary artery disease. Biomechanics and Modeling in Mechanobiology 18(6), 1867–1881 (2020)
[18] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. pp. 234–241. Springer (2015)
[19] Xiahai Zhuang and Juan Shen: Multi-scale patch and multi-modality atlases for whole heart segmentation of MRI, Medical Image Analysis 31: 77-87, (2016)
[20] Xiahai Zhuang: Challenges and Methodologies of Fully Automatic Whole Heart Segmentation: A Review. Journal of Healthcare Engineering 4 (3): 371-407, (2013)
[21] X Zhuang, et al.: Multiatlas whole heart segmentation of CT data using conditional entropy for atlas ranking and selection. Medical physics 42 (7), 3822-3833 (2015)
[22] X Zhuang, et al.: A Registration-Based Propagation Framework for Automatic Whole Heart Segmentation of Cardiac MRI. IEEE Transactions on Medical Imaging, 29 (9): 1612-1625, (2010)
[23] O. Bernard, A. Lalande, C. Zotti, F. Cervenansky, et al.: Deep Learning Techniques for Automatic MRI Cardiac Multi-structures Segmentation and Diagnosis: Is the Problem Solved ? in IEEE Transactions on Medical Imaging, vol. 37, no. 11, pp. 2514-2525, (2018)