There is emerging evidence that demonstrate spatial and temporal characteristics of the positive BOLD responses, however, the accompanying negative BOLD responses (NBR) are still under investigation. This is surprising since studies investigating NBR started as early as the introduction of the BOLD-fMRI. While there are limited number of studies that have utilized NBR in the normal aging and Alzheimer’s disease, we feel the NBR has not been used to its full capacity in the field. Recently, within the past two years, the number of publications on NBR has increased, making the timing of this research appropriate.
1. C. Lustig et al., “Functional deactivations: change with age and dementia of the Alzheimer type.,” Proc. Natl. Acad. Sci. U. S. A., vol. 100, no. 24, pp. 14504–9, 2003.
2. J. Persson, C. Lustig, J. K. Nelson, and P. A. Reuter-Lorenz, “Age differences in deactivation: A link to cognitive control?,” J. Cogn. Neurosci., vol. 19, no. 6, pp. 1021–1032, 2007.
3. J. R. Petrella, S. E. Prince, L. Wang, C. Hellegers, and P. M. Doraiswamy, “Prognostic value of posteromedial cortex deactivation in mild cognitive impairment,” PLoS One, vol. 2, no. 10, 2007.
4. D. P. Kennedy, E. Redcay, and E. Courchesne, “Failing to deactivate: Resting functional abnormalities in autism,” Proc. Natl. Acad. Sci., vol. 103, no. 21, pp. 8275–8280, 2006.
5. R. L. Buckner, J. R. Andrews-Hanna, and D. L. Schacter, “The brain’s default network: Anatomy, function, and relevance to disease,” Ann. N. Y. Acad. Sci., vol. 1124, no. 1, pp. 1–38, Mar. 2008.
6. S. J. Broyd, C. Demanuele, S. Debener, S. K. Helps, C. J. James, and E. J. S. Sonuga-Barke, “Default-mode brain dysfunction in mental disorders: a systematic review.,” Neurosci. Biobehav. Rev., vol. 33, no. 3, pp. 279–96, 2009
7. Richard S.J. Frackowiak, Karl J. Friston, Christopher D. Frith, Raymond J. Dolan, Cathy J. Price, Semir Zeki, John T. Ashburner, William D. Penny, “Analysis of fMRI Time Series: Linear Time-Invariant Models, Event-Related fMRI, and Optimal Experimental Design, Human Brain Function (Second Edition), Pages 793-822, Academic Press, 2004,
8. Boynton, G. M., Engel, S. A., Glover, G. H., & Heeger, D. J. (1996). Linear systems analysis of functional magnetic resonance imaging in human V1. The Journal of Neuroscience, 16 (13) 4207-4221
9. Dale AM, Buckner RL. Selective averaging of rapidly presented individual trials using fMRI. Hum Brain Mapp. 1997;5(5):329-40.
10. Huettel SA, McCarthy G. Evidence for a refractory period in the hemodynamic response to visual stimuli as measured by MRI. Neuroimage. 2000 May;11(5 Pt 1):547-53. doi: 10.1006/nimg.2000.0553. PMID: 10806040.
11. Fischl, B., H Salat, D., Busa, E., Albert, M., Dieterich, M., & Haselgrove, C. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33, 341–355.
12. Fischl, B., Van Der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D. H., Busa, E., Seidman, L. J., Goldstein, J., Kennedy, D., Caviness, V., Makris, N., Rosen, B., & Dale, A. M. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 11–22.
13. Parker, D., Liu, X., & Razlighi, Q. R. (2016). Optimal slice timing correction and its interaction with fMRI parameters and artifacts. Medical Image Analysis, 35, 434–445.
14. Parker, D. B., & Razlighi, Q. R. (2019). The benefit of slice timing correction in common fMRI preprocessing pipelines. Frontiers in Neuroscience, 13(JUL).
15. Power, J. D., Barnes, K. a, Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154.