We propose a parametric physics-informed neural network that can be personalized to left-ventricular anatomies from cardiac MRI data. The model combines a left-ventricular anatomical shape model derived from cardiac MRI data, and a functional model derived from synthetic cardiac deformations. The network is trained with a label-free approach using a physics-based cost-function in less than 5 minutes on a single CPU. Network inputs are endocardium pressure and myocyte activation. A complete cardiac cycle can be simulated in less than a minute. This approach is 30 times faster than the corresponding finite element simulation even when including training time.
[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Man´e, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Vi´egas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. Tensor-Flow: Large-scale machine learning on heterogeneous systems. URL: https://www.tensorflow.org/. software available from tensorflow.org.
[2] Buoso, S., Joyce,T, Kozerke S, (Forthcoming). Personalising left-ventricular biophysical models of the heart using parametric physics-informed neural networks.
[3] Buoso, S., Manzoni, A., Alkadhi, H., Plass, A., Quarteroni, A., Kurtcuoglu, V., 2020b. Reduced-order modeling of blood flow for noninvasive functional evaluation of coronary artery disease. Biomechanics and Modeling in Mechanobiology 18, 1867–1881. doi:10.1007/s10237-019-01182-w.
[4] Buoso, S., Palacios, R., 2017. On-demand aerodynamics of integrally actuated membranes with feedback control. AIAA Journal 55, 377–388. doi:doi.org/10.2514/1.J054888.
[5] Caruel, M., Chabiniok, R., Moireau, P., Lecarpentier, Y., Chapelle, D., 2014. Dimensional reductions of a cardiac model for effective validation and calibration. Biomechanics and Modeling in Mechanobiology 13, 897–914. doi:10.1007/s10237-013-0544-6.
[6] Charlton, P.H., Mariscal Harana, J., Vennin, S., Li, Y., Chowienczyk, P., Alastruey, J., 2019. Modeling arterial pulse waves in healthy aging: a database for in silico evaluation of hemodynamics and pulse wave indexes. American Journal of Physiology-Heart and Circulatory Physiology 317, H1062– H1085. doi:10.1152/ajpheart.00218.2019.
[7] Fresca, S., Dede, L., Manzoni, A., 2020. A comprehensive deep learningbased approach to reduced order modeling of nonlinear time-dependent parametrized pdes. arXiv preprint arXiv:2001.04001.
[8] Hesthaven, J., Ubbiali, S., 2018. Non-intrusive reduced order modeling of nonlinear problems using neural networks. Journal of Computational Physics 363, 55 – 78. doi:doi.org/10.1016/j.jcp.2018.02.037.
[9] Lee, K., Carlberg, K.T., 2020. Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders. Journal of Computational Physics 404, 108973. doi:doi.org/10.1016/j.jcp.2019.108973.
[10] Maso Talou, G.D., Babarenda Gamage, T.P., Sagar, M., Nash, M.P., 2020. Deep learning over reduced intrinsic domains for efficient mechanics of the left ventricle. Frontiers in Physics 8, 30. doi:10.3389/fphy.2020.00030.
[11] Mollero, R., Pennec, X., Delingette, H., Ayache, N., Sermesant, M., 2019. Population-based priors in cardiac model personalisation for consistent parameter estimation in heterogeneous databases. International Journal for Numerical Methods in Biomedical Engineering 35, e3158. doi:10.1002/cnm.3158.
[12] Nguyen-Thanh, V.M., Zhuang, X., Rabczuk, T., 2020. A deep energy method for finite deformation hyperelasticity. European Journal of Mechanics - A/Solids 80, 103874. doi:doi.org/10.1016/j.euromechsol.2019.103874.
[13] Pfaller, M.R., H¨ormann, J.M., Weigl, M., Nagler, A., Chabiniok, R., Bertoglio, C., Wall, W.A., 2019. The importance of the pericardium for cardiac biomechanics: from physiology to computational modeling. Biomechanics and Modeling in Mechanobiology 18, 503–529. doi:10.1007/s10237-018-1098-4
[14] Raissi, M., 2018. Deep hidden physics models:deep learning of nonlinear partial differential equations. Journal of Machine Learning Research 19.
[15] Ramachandran, P., Zoph, B., Le, Q.V., 2017. Searching for activation functions. arXiv preprint arXiv:1710.05941 .
[16] Westerhof, N., Lankhaar, J.,Westerhof, B., 2009. The arterial windkessel. Medical & biological engineering & computing 47, 131–141.