Time-dependent diffusion contains rich information about the tissue microstructure. Conventional methods to measure the time-varying diffusivity probe a single timescale per acquisition, limiting time resolution. Furthermore, access to sub-millisecond timescales is limited by the pulsed gradient hardware. An alternative method is presented here. We extend the static field gradient, Carr-Purcell-Meiboom-Gill cycle by incrementing the $$$\pi$$$-pulse spacings to isolate the on-resonance signal. The resulting spin echo train probes a range of short timescales (50 – 500 microseconds) in one shot and enables a 1-minute time-dependent diffusivity measurement. Proof-of-principle simulations and experimental results on pure liquids and yeast are presented.
[1] L. L. Latour, K. Svoboda, P. P. Mitra, and C. H. Sotak, Time-Dependent Diffusion of Water in a Biological Model System., Proc. Natl. Acad. Sci. U.S.A. 91, 1229 (1994).
[2] P. P. Mitra, P. N. Sen, and L. M. Schwartz, Short-Time Behavior of the Diffusion Coefficient as a Geometrical Probe of Porous Media, Phys. Rev. B 47, 8565 (1993).
[3] J. E. Tanner, Self Diffusion of Water in Frog Muscle, Biophys. J. 28, 107 (1979).
[4] O. Reynaud, Time-Dependent Diffusion MRI in Cancer: Tissue Modeling and Applications, Front. Phys. 5, 58 (2017).
[5] L. L. Latour, P. P. Mitra, R. L. Kleinberg, and C. H. Sotak, Time-Dependent Diffusion Coefficient of Fluids in Porous Media as a Probe of Surface-to-Volume Ratio, J. Magn. Reson., Series A 101, 342 (1993).
[6] M. D. Hurlimann, K. G. Helmer, L. L. Latour, and C. H. Sotak, Restricted Diffusion in Sedimentary Rocks. Determination of Surface-Area-to-Volume Ratio and Surface Relaxivity, J. Magn. Reson., Series A 111, 169 (1994).
[7] D. S. Novikov and V. G. Kiselev, Surface-to-Volume Ratio with Oscillating Gradients, J. Magn. Reson. 210, 141 (2011).
[8] P. N. Sen, Time-Dependent Diffusion Coefficient as a Probe of the Permeability of the Pore Wall, J. Chem. Phys. 119, 9871 (2003).
[9] J. E. Tanner, Transient Diffusion in a System Partitioned by Permeable Barriers. Application to NMR Measurements with a Pulsed Field Gradient, J. Chem. Phys. 69, 1748 (1978).
[10] D. S. Novikov, E. Fieremans, J. H. Jensen, and J. A. Helpern, Random Walk with Barriers, Nat. Phys. 7, 508 (2011).
[11] J. Stepišnik, Time-Dependent Self-Diffusion by NMR Spin-Echo, Physica B: Condensed Matter 183, 343 (1993).
[12] P. T. Callaghan and J. Stepišnik, Frequency-Domain Analysis of Spin Motion Using Modulated-Gradient NMR, J. Magn. Reson., Series A 117, 118 (1995).
[13] D. C. Douglass and D. W. McCall, Diffusion in Paraffin Hydrocarbons, J. Chem. Phys. 62, 1102 (1958).
[14] J. Stepišnik, Validity Limits of Gaussian Approximation in Cumulant Expansion for Diffusion Attenuation of Spin Echo, Physica B: Condensed Matter 270, 110 (1999).
[15] A. L. Sukstanskii and D. A. Yablonskiy, Gaussian Approximation in the Theory of MR Signal Formation in the Presence of Structure-Specific Magnetic Field Inhomogeneities, J. Magn. Reson. 163, 236 (2003).
[16] S. Axelrod and P. N. Sen, Nuclear Magnetic Resonance Spin Echoes for Restricted Diffusion in an Inhomogeneous Field: Methods and Asymptotic Regimes, J. Chem. Phys. 114, 6878 (2001).
[17] M. Schachter, M. D. Does, A. W. Anderson, and J. C. Gore, Measurements of Restricted Diffusion Using an Oscillating Gradient Spin-Echo Sequence, J. Magn. Reson.147, 232 (2000).
[18] J. Stepišnik, S. Lasič, A. Mohorič, I. Serša, and A. Sepe, Spectral Characterization of Diffusion in Porous Media by the Modulated Gradient Spin Echo with CPMG Sequence, J. Magn. Reson.182, 195 (2006).
[19] P. T. Callaghan and J. Stepišnik, Generalized Analysis of Motion Using Magnetic Field Gradients, in Advances in Magnetic and Optical Resonance, edited by W. S. Warren, Vol. 19 (Academic Press, 1996), pp. 325–388.
[20] D. S. Novikov and V. G. Kiselev, Effective Medium Theory of a Diffusion-Weighted Signal, NMR Biomed. 23, 682 (2010).
[21] J. C. Gore, J. Xu, D. C. Colvin, T. E. Yankeelov, E. C. Parsons, and M. D. Does, Characterization of Tissue Structure at Varying Length Scales Using Temporal Diffusion Spectroscopy, NMR Biomed. 23, 745 (2010).
[22] L. J. Zielinski and M. D. Hürlimann, Probing Short Length Scales with Restricted Diffusion in a Static Gradient Using the CPMG Sequence, J. Magn. Reson. 172, 161 (2005).
[23] S. Lasič, J. Stepišnik, and A. Mohorič, Displacement Power Spectrum Measurement by CPMG in Constant Gradient, J. Magn. Reson. 182, 208 (2006).
[24] Y.-Q. Song, Categories of Coherence Pathways for the CPMG Sequence, J. Magn. Reson. 157, 82 (2002).
[25] M. D. Hürlimann and D. D. Griffin, Spin Dynamics of Carr–Purcell–Meiboom–Gill-like Sequences in Grossly Inhomogeneous B0 and B1 Fields and Application to NMR Well Logging, J. Magn. Reson. 143, 120 (2000).
[26] I. Serša, F. Bajd, and A. Mohorič, Effects of Off-Resonance Spins on the Performance of the Modulated Gradient Spin Echo Sequence, Journal of Magnetic Resonance 270, 77 (2016).
[27] Y.-Q. Song, Multiple Modulation Multiple Echoes: A One-Shot Method, Magn. Reson. Imaging 23, 301 (2005).
[28] E. E. Sigmund, H. Cho, and Y.-Q. Song, Multiple-Modulation-Multiple-Echo Magnetic Resonance, Concepts Magn. Reson., Part A 30A, 358 (2007).
[29] B. Geil, Measurement of Translational Molecular Diffusion Using Ultrahigh Magnetic Field Gradient NMR, Concepts Magn. Reson. 10, 299 (1998).
[30] L. Ning., K. Setsompop, C.-F. Westin, and Y. Rathi, New Insights about Time-Varying Diffusivity and Its Estimation from Diffusion MRI, Magn. Reson. Med. 78, 763 (2017).
[31] G. Eidmann, R. Savelsberg, P. Blümler, and B. Blümich, The NMR MOUSE, a Mobile Universal Surface Explorer, J. Magn. Reson. 122, 104 (1996).
[32] N. H. Williamson, R. Ravin, D. Benjamini, H. Merkle, M. Falgairolle, M. J. O’Donovan, D. Blivis, D. Ide, T. X. Cai, N. S. Ghorashi, and others, Magnetic Resonance Measurements of Cellular and Sub-Cellular Membrane Structures in Live and Fixed Neural Tissue, eLife 8, e51101 (2019).