To date, limited attention has been paid to diffusion-weighted (DW) MRI signal modelling of the liver, where new imaging methods are needed to tackle diseases such as cancer. We report on Monte Carlo (MC) simulations run in synthetic hepatic cells to inform the developing of new model-based methods for liver application. We specifically investigate the question: “can cell size and diffusivity be estimated from signal cumulants at fixed diffusion time and realistic SNR?”, and find that the task is feasible for clinical diffusion times and b=0 SNR as low as 20, provided that both apparent diffusivity and kurtosis are considered.
[1] D. Le Bihan, “Looking into the functional architecture of the brain with diffusion MRI”, Nat. Rev. Neurosci., vol. 4, no. 6, pp. 469–480, Jun. 2003, doi: 10.1038/nrn1119.
[2] M. Rovaris et al., “Diffusion MRI in multiple sclerosis”, Neurology, vol. 65, no. 10, pp. 1526–1532, Nov. 2005, doi: 10.1212/01.wnl.0000184471.83948.e0.
[3] T. Tamada, T. Sone, Y. Jo, A. Yamamoto, and K. Ito, “Diffusion-weighted MRI and its role in prostate cancer”, NMR Biomed., vol. 27, no. 1, pp. 25–38, Jan. 2014, doi: 10.1002/nbm.2956.
[4] R. Perez-Lopez et al., “Diffusion-weighted Imaging as a Treatment Response Biomarker for Evaluating Bone Metastases in Prostate Cancer: A Pilot Study”, Radiology, vol. 283, no. 1, pp. 168–177, Apr. 2017, doi: 10.1148/radiol.2016160646.
[5] A. R. Martin et al., “Translating state-of-the-art spinal cord MRI techniques to clinical use: A systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI”, NeuroImage Clin., vol. 10, pp. 192–238, 2016, doi: 10.1016/j.nicl.2015.11.019.
[6] H. Rahbar et al., “Utility of Diffusion-weighted Imaging to Decrease Unnecessary Biopsies Prompted by Breast MRI: A Trial of the ECOG-ACRIN Cancer Research Group (A6702)”, Clin. Cancer Res., vol. 25, no. 6, pp. 1756–1765, Mar. 2019, doi: 10.1158/1078-0432.CCR-18-2967.
[7] Y. Assaf, T. Blumenfeld-Katzir, Y. Yovel, and P. J. Basser, “Axcaliber: A method for measuring axon diameter distribution from diffusion MRI”, Magn. Reson. Med., vol. 59, no. 6, pp. 1347–1354, Jun. 2008, doi: 10.1002/mrm.21577.
[8] H. Zhang, T. Schneider, C. A. Wheeler-Kingshott, and D. C. Alexander, “NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain”, Neuroimage, vol. 61, no. 4, pp. 1000–1016, Jul. 2012, doi: 10.1016/j.neuroimage.2012.03.072.
[9] D. S. Novikov, J. Veraart, I. O. Jelescu, and E. Fieremans, “Rotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion MRI”, Neuroimage, vol. 174, pp. 518–538, Jul. 2018, doi: 10.1016/j.neuroimage.2018.03.006.
[10] B. Lampinen et al., “Towards unconstrained compartment modeling in white matter using diffusion‐relaxation MRI with tensor‐valued diffusion encoding”, Magn. Reson. Med., vol. 84, no. 3, pp. 1605–1623, Sep. 2020, doi: 10.1002/mrm.28216.
[11] B. Jeurissen, J.-D. Tournier, T. Dhollander, A. Connelly, and J. Sijbers, “Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data”, Neuroimage, vol. 103, pp. 411–426, Dec. 2014, doi: 10.1016/j.neuroimage.2014.07.061.
[12] E. T. McKinnon, J. A. Helpern, and J. H. Jensen, “Modeling white matter microstructure with fiber ball imaging”, Neuroimage, vol. 176, pp. 11–21, Aug. 2018, doi: 10.1016/j.neuroimage.2018.04.025.
[13] S. N. Jespersen, L. A. Leigland, A. Cornea, and C. D. Kroenke, “Determination of axonal and dendritic orientation distributions within the developing cerebral cortex by diffusion tensor imaging”, IEEE Trans. Med. Imaging, vol. 31, no. 1, pp. 16–32, 2012, doi: 10.1109/TMI.2011.2162099.
[14] E. Panagiotaki et al., “Microstructural Characterization of Normal and Malignant Human Prostate Tissue With Vascular, Extracellular, and Restricted Diffusion for Cytometry in Tumours Magnetic Resonance Imaging”, Invest. Radiol., vol. 50, no. 4, pp. 218–227, Apr. 2015, doi: 10.1097/RLI.0000000000000115.
[15] A. Chatterjee et al., “Diagnosis of Prostate Cancer with Noninvasive Estimation of Prostate Tissue Composition by Using Hybrid Multidimensional MR Imaging: A Feasibility Study”, Radiology, vol. 287, no. 3, pp. 864–873, Jun. 2018, doi: 10.1148/radiol.2018171130.
[16] V. Brancato, C. Cavaliere, M. Salvatore, and S. Monti, “Non-Gaussian models of diffusion weighted imaging for detection and characterization of prostate cancer: a systematic review and meta-analysis”, Sci. Rep., vol. 9, no. 1, p. 16837, Dec. 2019, doi: 10.1038/s41598-019-53350-8.
[17] G. Lemberskiy, E. Fieremans, J. Veraart, F.-M. Deng, A. B. Rosenkrantz, and D. S. Novikov, “Characterization of Prostate Microstructure Using Water Diffusion and NMR Relaxation”, Front. Phys., vol. 6, Sep. 2018, doi: 10.3389/fphy.2018.00091.
[18] L. Li and H. Wang, “Heterogeneity of liver cancer and personalized therapy”, Cancer Lett., vol. 379, no. 2, pp. 191–197, Sep. 2016, doi: 10.1016/j.canlet.2015.07.018.
[19] Z. Zhou, M.-J. Xu, and B. Gao, “Hepatocytes: a key cell type for innate immunity”, Cell. Mol. Immunol., vol. 13, no. 3, pp. 301–315, May 2016, doi: 10.1038/cmi.2015.97.
[20] H. Imamura, S. Kawasaki, J. Shiga, Y. Bandai, K. Sanjo, and Y. Idezuki, “Quantitative evaluation of parenchymal liver cell volume and total hepatocyte number in cirrhotic patients”, Hepatology, vol. 14, no. 3, pp. 448–453, Sep. 1991, doi: 10.1002/hep.1840140308.
[21] N. C. Martin, C. T. McCullough, P. G. Bush, L. Sharp, A. C. Hall, and D. J. Harrison, “Functional analysis of mouse hepatocytes differing in DNA content: Volume, receptor expression, and effect of IFN”, J. Cell. Physiol., vol. 191, no. 2, pp. 138–144, May 2002, doi: 10.1002/jcp.10057.
[22] E. M. Jack et al., “Increase in hepatocyte and nuclear volume and decrease in the population of binucleated cells in preneoplastic foci of rat liver: A stereological study using the nucleator method”, Hepatology, vol. 11, no. 2, pp. 286–297, Feb. 1990, doi: 10.1002/hep.1840110220.
[23] M. Schlageter, L. M. Terracciano, S. D’Angelo, and P. Sorrentino, “Histopathology of hepatocellular carcinoma”, World J. Gastroenterol., vol. 20, no. 43, p. 15955, 2014, doi: 10.3748/wjg.v20.i43.15955.
[24] J. Rafael-Patino, D. Romascano, A. Ramirez-Manzanares, E. J. Canales-Rodríguez, G. Girard, and J.-P. Thiran, “Robust Monte-Carlo Simulations in Diffusion-MRI: Effect of the Substrate Complexity and Parameter Choice on the Reproducibility of Results”, Front. Neuroinform., vol. 14, Mar. 2020, doi: 10.3389/fninf.2020.00008.
[25] N. Shemesh et al., “Conventions and nomenclature for double diffusion encoding NMR and MRI”, Magn. Reson. Med., vol. 75, no. 1, pp. 82–87, Jan. 2016, doi: 10.1002/mrm.25901.
[26] J. H. Jensen, J. A. Helpern, A. Ramani, H. Lu, and K. Kaczynski, “Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging”, Magn. Reson. Med., vol. 53, no. 6, pp. 1432–1440, Jun. 2005, doi: 10.1002/mrm.20508.
[27] D. S. Novikov, V. G. Kiselev, and S. N. Jespersen, “On modeling”, Magn. Reson. Med., vol. 79, no. 6, pp. 3172–3193, Jun. 2018, doi: 10.1002/mrm.27101.