In this work, our protocol leverages the most recent advances in the b-tensor diffusion encoding, and also uses a zoomed imaging technique, to specifically scan the hippocampus. Our sequence is able to acquire high-resolution images which enable direct delineation of hippocampal structures and allows estimation of advanced diffusion metrics, as well as parameters that can be measured from a standard multi-shell diffusion data set. Therefore, our acquisition can be used as an all-in-one sequence for microstructural imaging of the hippocampus. We also defined a subsampled acquisition protocol that is feasible for a clinical setting.
[1] M. R. Nazem-Zadeh et al., “Lateralization of temporal lobe epilepsy using a novel uncertainty analysis of MR diffusion in hippocampus, cingulum, and fornix, and hippocampal volume and FLAIR intensity,” J. Neurol. Sci., vol. 342, no. 1–2, pp. 152–161, 2014, doi: 10.1016/j.jns.2014.05.019.
[2] A. Nazeri et al., “Gray Matter Neuritic Microstructure Deficits in Schizophrenia and Bipolar Disorder,” Biol. Psychiatry, vol. 82, no. 10, pp. 726–736, 2017, doi: 10.1016/j.biopsych.2016.12.005.
[3] M. W. W. Y. Zhang, N. Schuff, G. -H. Jahng, W. Bayne, S. Mori, L. Schad, S. Mueller, A. -T. Du, J. H. Kramer, K. Yaffe, H. Chui, W. J. Jagust, B. L. Miller, “Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease,” Neurology, vol. 68, 2007, doi: https://doi.org/10.1212/01.wnl.0000250326.77323.01.
[4] R. Cappellani et al., “Subcortical deep gray matter pathology in patients with multiple sclerosis is associated with white matter lesion burden and atrophy but not with cortical atrophy: A diffusion tensor MRI study,” Am. J. Neuroradiol., vol. 39, no. 5, pp. 912–919, 2014, doi: 10.3174/ajnr.A3788.
[5] F. Szczepankiewicz, S. Eriksson, M. Nilsson, D. Topgaard, and S. Lasi, “Microanisotropy imaging : quantification of microscopic diffusion anisotropy and orientational order parameter by diffusion MRI with magic-angle spinning of the q-vector,” vol. 2, no. February, pp. 1–14, 2014, doi: 10.3389/fphy.2014.00011.
[6] F. Szczepankiewicz et al., “Quantification of microscopic diffusion anisotropy disentangles effects of orientation dispersion from microstructure: Applications in healthy volunteers and in brain tumors,” Neuroimage, 2015, doi: 10.1016/j.neuroimage.2014.09.057.
[7] C. Westin et al., “NeuroImage Q-space trajectory imaging for multidimensional diffusion MRI of the human brain,” Neuroimage, vol. 135, pp. 345–362, 2016, doi: 10.1016/j.neuroimage.2016.02.039.
[8] P. Riffel et al., “Zoomed EPI-DWI of the pancreas using two-dimensional spatially-selective radiofrequency excitation pulses,” PLoS One, vol. 9, no. 3, pp. 1–5, 2014, doi: 10.1371/journal.pone.0089468.
[9] M. Blasche, P. Riffel, and M. Lichy, “TimTX TrueShape and syngo ZOOMit Technical and Practical Aspects Background – from parallel receive to parallel transmit,” MAGNETOM Flash, pp. 74–84, 2012.
[10] S. Treit, T. Steve, D. W. Gross, and C. Beaulieu, “High resolution in-vivo diffusion imaging of the human hippocampus,” Neuroimage, no. August 2017, pp. 1–9, 2018, doi: 10.1016/j.neuroimage.2018.01.034.
[11] J. Sjölund, F. Szczepankiewicz, M. Nilsson, D. Topgaard, C.-F. Westin, and H. Knutsson, “Constrained optimization of gradient waveforms for generalized diffusion encoding,” J. Magn. Reson., vol. 261, p. 157—168, Dec. 2015, doi: 10.1016/j.jmr.2015.10.012.
[12] F. Szczepankiewicz, C. F. Westin, and M. Nilsson, “Maxwell-compensated design of asymmetric gradient waveforms for tensor-valued diffusion encoding,” Magn. Reson. Med., vol. 82, no. 4, pp. 1424–1437, 2019, doi: 10.1002/mrm.27828.
[13] G. Yang and J. A. McNab, “Eddy current nulled constrained optimization of isotropic diffusion encoding gradient waveforms,” Magn. Reson. Med., vol. 81, no. 3, pp. 1818–1832, 2019, doi: 10.1002/mrm.27539.
[14] S. Learning, S. Fadnavis, J. Batson, and E. Garyfallidis, “Patch2Self : Denoising Diffusion MRI with,” no. NeurIPS, pp. 1–11, 2020.
[15] E. Kellner, B. Dhital, V. G. Kiselev, and M. Reisert, “Gibbs-ringing artifact removal based on local subvoxel-shifts,” Magn. Reson. Med., vol. 76, no. 5, pp. 1574–1581, 2016, doi: 10.1002/mrm.26054.
[16] S. M. Smith et al., “Advances in functional and structural MR image analysis and implementation as FSL,” in NeuroImage, 2004, doi: 10.1016/j.neuroimage.2004.07.051.
[17] E. Garyfallidis et al., “Dipy, a library for the analysis of diffusion MRI data,” Front. Neuroinform., vol. 8, p. 8, 2014, doi: 10.3389/fninf.2014.00008.
[18] C. A. Elliott, D. W. Gross, B. M. Wheatley, C. Beaulieu, and T. Sankar, “Longitudinal hippocampal and extra-hippocampal microstructural and macrostructural changes following temporal lobe epilepsy surgery,” Epilepsy Res., vol. 140, no. December 2017, pp. 128–137, 2018, doi: 10.1016/j.eplepsyres.2018.01.008.
[19] B. C. Bernhardt et al., “The spectrum of structural and functional imaging abnormalities in temporal lobe epilepsy,” Ann. Neurol., vol. 80, no. 1, pp. 142–153, 2016, doi: 10.1002/ana.24691.