We demonstrate the feasibility of machine learning direct prediction of tissue microstructure from raw diffusion MRI data. We test the approach by attempting to predict the main fiber orientation as this metric is well-understood and easily extracted using a diffusion tensor model. We present results on both simulated data and a matched dMRI-3D histology dataset.
[1] A. Rokem, J. D. Yeatman, F. Pestilli, K. N. Kay, A. Mezer, S. van der Walt, and B. A. Wandell. Evaluating the accuracy of diffusion mri models in white matter.PLOS ONE, 10(4):1–26, 04 2015.
[2] A. Seehaus, A. Roebroeck, M. Bastiani, L. Fonseca, H. Bratzke, N. Lori, A. Vilanova, R. Goebel, and R. Galuske. Histological validation of high-resolution dti in human post mortem tissue.Frontiers in Neuroanatomy, 9:98, 2015.
[3] K. G. Schilling, V. Janve, Y. Gao, I. Stepniewska, B. A. Landman, and A. W. Anderson. Histological validation of diffusion mri fiber orientation distributions and dispersion.NeuroImage, 165:200 – 221, 2018.
[4] K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A.Zalocusky, J. Mattis, A. K. Denisin, H. Bernstein S. Pak, C. Ramakrishnan, L. Grosenick, V. Gradinaru, andK. Deisseroth. Structural and molecular interrogation of intact biological systems.Nature, 497:332337, 2013
[5] R. Renier, Z. Wu, D. J. Simon, J. Yang, P. Ariel, and M. Tessier-Lavigne. idisco: A simple, rapid method to immunolabellarge tissue samples for volume imaging.Cell, 159(4):896 – 910, 2014.
[6] Y.-G Park, C. H. Sohn, R. Chen, M. McCue, D. H. Yun, G. T. Drummond, T. Ku, N. B. Evans, H. C. Oak, W. Trieu, H. Choi,X. Jin, V. Lilascharoen, J. Wang, M. C. Truttmann, H. W. Qi, H. L. Ploegh, T. R. Golub, S.-C. Chen, M. P. Frosch, H. J. Kulik,B. K. Lim, and K. Chung. Protection of tissue physicochemical properties using polyfunctional crosslinkers.Nat. Biotech.,37:73–83, 2019.
[7] Ivana Drobnjak, Bernard Siow, Daniel C. Alexander, Optimizing gradient waveforms for microstructure sensitivity in diffusion-weighted MR, Journal of Magnetic Resonance,206(1): 41-51, 2010
[8] Ivana Drobnjak, Hui Zhang, Matt G. Hall, Daniel C. Alexander, The matrix formalism for generalised gradients with time-varying orientation in diffusion NMR, Journal of Magnetic Resonance, 210(1), 151-157, 2011
[9] Andrada Ianuş, Bernard Siow, Ivana Drobnjak, Hui Zhang, Daniel C. Alexander,Gaussian phase distribution approximations for oscillating gradient spin echo diffusion MRI,Journal of Magnetic Resonance, 27: 25-34, 2013
[10] Ianuş A., Alexander D.C., Drobnjak I. Microstructure Imaging Sequence Simulation Toolbox. In: Tsaftaris S., Gooya A., Frangi A., Prince J. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2016. Lecture Notes in Computer Science, 9968, 2016
[11] Miller KL, Stagg CJ, Douaud G, et al. Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner. Neuroimage, 57(1):167-181, 2011.
[12] Evan Murray*, Jae Hun Cho*, Daniel Goodwin*, Taeyun Ku*, Justin Swaney*, Sung-Yon Kim, Heejin Choi, Jeong-Yoon Park, Austin Hubbert, Meg McCue, Young-Gyun Park, Sara Vassallo, Naveed Bakh, Matthew Frosch, Van J. Wedeen, H. Sebastian Seung, and Kwanghun Chung.Simple, scalable proteomic imaging for high-dimensional profiling of intact systems, Cell, Dec 3:163(6): 1500-14.
[13] Fedorov A., Beichel R., Kalpathy-Cramer J., Finet J., Fillion-Robin J-C., Pujol S., Bauer C., Jennings D., Fennessy F.M., Sonka M., Buatti J., Aylward S.R., Miller J.V., Pieper S., Kikinis R. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network. Magn Reson Imaging. 30(9):1323-41, 2012.