There is a lack of pre-trained deep learning model weights on large scale medical image dataset, due to privacy concerns. Federated learning enables training deep networks while preserving privacy. This work explored co-training multi-task models on multiple heterogeneous datasets, and validated the usage of federated learning could serve the purpose of pre-trained weights for downstream tasks.
1. Huh, M., Agrawal, P., & Efros, A. A. (2016). What makes ImageNet good for transfer learning?. arXiv preprint arXiv:1608.08614.
2. Studer, L., Alberti, M., Pondenkandath, V., Goktepe, P., Kolonko, T., Fischer, A., ... & Ingold, R. (2019, September). A comprehensive study of ImageNet pre-training for historical document image analysis. In 2019 International Conference on Document Analysis and Recognition (ICDAR) (pp. 720-725). IEEE.
3. Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009, June). Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition (pp. 248-255). Ieee.
4. Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., ... & Zitnick, C. L. (2014, September). Microsoft coco: Common objects in context. In European conference on computer vision (pp. 740-755). Springer, Cham.
5. He, K., Girshick, R., & Dollár, P. (2019). Rethinking imagenet pre-training. In Proceedings of the IEEE international conference on computer vision (pp. 4918-4927).
6. Zoph, B., Ghiasi, G., Lin, T. Y., Cui, Y., Liu, H., Cubuk, E. D., & Le, Q. (2020). Rethinking pre-training and self-training. Advances in Neural Information Processing Systems, 33.
7. Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., ... & d'Oliveira, R. G. (2019). Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977.
8. Ramaswamy, S., Mathews, R., Rao, K., & Beaufays, F. (2019). Federated learning for emoji prediction in a mobile keyboard. arXiv preprint arXiv:1906.04329.
9. Yang, T., Andrew, G., Eichner, H., Sun, H., Li, W., Kong, N., ... & Beaufays, F. (2018). Applied federated learning: Improving google keyboard query suggestions. arXiv preprint arXiv:1812.02903.
10. Chen, M., Mathews, R., Ouyang, T., & Beaufays, F. (2019). Federated learning of out-of-vocabulary words. arXiv preprint arXiv:1903.10635.
11. Zhang, W., Zhou, T., Lu, Q., Wang, X., Zhu, C., Wang, Z., & Wang, F. (2020). Dynamic fusion based federated learning for COVID-19 detection. arXiv preprint arXiv:2009.10401.
12. Liu, Y., Kang, Y., Xing, C., Chen, T., & Yang, Q. (2018). Secure federated transfer learning. arXiv preprint arXiv:1812.03337.
13. Choudhury, O., Gkoulalas-Divanis, A., Salonidis, T., Sylla, I., Park, Y., Hsu, G., & Das, A. (2019). Differential privacy-enabled federated learning for sensitive health data. arXiv preprint arXiv:1910.02578.
14. Li, W., Milletarì, F., Xu, D., Rieke, N., Hancox, J., Zhu, W., ... & Feng, A. (2019, October). Privacy-preserving federated brain tumour segmentation. In International Workshop on Machine Learning in Medical Imaging (pp. 133-141). Springer, Cham.
15. Yang, J., Shi, R., & Ni, B. (2020). MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark for Medical Image Analysis. arXiv preprint arXiv:2010.14925.
16. Mironov, I., Talwar, K., & Zhang, L. (2019). R\'enyi Differential Privacy of the Sampled Gaussian Mechanism. arXiv preprint arXiv:1908.10530.