This study explored the feasibility of evaluating fibrosis of patients with PDAC and correlate it with histopathological features using IVIM-DWI compared with DWI. No statistically significant differences were found in ADC and D* values between the high- and low-fibrosis groups. A significant negative correlation between D values and fibrosis and a significant positive correlation between f values and fibrosis were observed. D and ƒ values derived from the IVIM model had high sensitivity and diagnostic performance for grading fibrosis in PDAC compared with the conventional DWI model. IVIM-DWI could serve as an imaging biomarker for predicting the fibrosis grade of PDAC.
1. Mizrahi J, Surana R, Valle J, Shroff R. Pancreatic cancer. Lancet (London, England). 2020;395(10242):2008-2020. doi:10.1016/s0140-6736(20)30974-0.
2. Rombouts S, Walma M, Vogel J, van Rijssen L, Wilmink J, Mohammad N, et al. Systematic Review of Resection Rates and Clinical Outcomes After FOLFIRINOX-Based Treatment in Patients with Locally Advanced Pancreatic Cancer. Annals of surgical oncology. 2016;23(13):4352-4360. doi:10.1245/s10434-016-5373-2.
3. Wang S, Li Y, Xing C, Ding C, Zhang H, Chen L, et al. Tumor microenvironment in chemoresistance, metastasis and immunotherapy of pancreatic cancer. American journal of cancer research. 2020;10(7):1937-1953.
4. Provenzano P, Cuevas C, Chang A, Goel V, Von Hoff D, Hingorani S. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer cell. 2012;21(3):418-29. doi:10.1016/j.ccr.2012.01.007.
5. S K, MC E, N C, PA T, RK G, A G, et al. Ormeloxifene suppresses desmoplasia and enhances sensitivity of gemcitabine in pancreatic cancer. Cancer research. 2015;75(11):2292-304. doi:10.1158/0008-5472.Can-14-2397.
6. MA J, DS C, A N, TE B, N C, KK F, et al. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut. 2013;62(1):112-20. doi:10.1136/gutjnl-2012-302529.
7. V H, M R, M Y, DJ R, T M, M D. Tumour-stroma interactions in pancreatic ductal adenocarcinoma: rationale and current evidence for new therapeutic strategies. Cancer treatment reviews. 2014;40(1):118-28. doi:10.1016/j.ctrv.2013.04.004. 8. Taouli B, Koh D. Diffusion-weighted MR imaging of the liver. Radiology. 2010;254(1):47-66. doi:10.1148/radiol.09090021.
9. Ni P, Lin Y, Zhong Q, Chen Z, Sandrasegaran K, Lin C. Technical advancements and protocol optimization of diffusion-weighted imaging (DWI) in liver. Abdominal radiology (New York). 2016;41(1):189-202. doi:10.1007/s00261-015-0602-x.
10. Muraoka N, Uematsu H, Kimura H, Imamura Y, Fujiwara Y, Murakami M, et al. Apparent diffusion coefficient in pancreatic cancer: characterization and histopathological correlations. Journal of magnetic resonance imaging : JMRI. 2008;27(6):1302-8. doi:10.1002/jmri.21340.
11. EM H, MZ L, MR P, S J, HE R, SW W, et al. Can diffusion-weighted imaging serve as a biomarker of fibrosis in pancreatic adenocarcinoma? Journal of magnetic resonance imaging : JMRI. 2017;46(2):393-402. doi:10.1002/jmri.25581.
12. Bieliuniene E, Frokjaer JB, Pockevicius A, Kemesiene J, Lukosevicius S, Basevicius A, et al. Magnetic Resonance Imaging as a Valid Noninvasive Tool for the Assessment of Pancreatic Fibrosis. Pancreas. 2019 Jan;48(1):85-93. Epub 2018/11/20. doi:10.1097/MPA.0000000000001206.
13. Dixon W. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging: a modest proposal with tremendous potential. Radiology. 1988;168(2):566-7. doi:10.1148/radiology.168.2.3393682.
14. Yoon J, Lee J, Baek J, Shin C, Kiefer B, Han J, et al. Evaluation of hepatic fibrosis using intravoxel incoherent motion in diffusion-weighted liver MRI. Journal of computer assisted tomography. 2014;38(1):110-6. doi:10.1097/RCT.0b013e3182a589be. 15. Suo S, Cheng F, Cao M, Kang J, Wang M, Hua J, et al. Multiparametric diffusion-weighted imaging in breast lesions: Association with pathologic diagnosis and prognostic factors. Journal of magnetic resonance imaging : JMRI. 2017;46(3):740-750. doi:10.1002/jmri.25612.
16. Cho G, Moy L, Kim S, Baete S, Moccaldi M, Babb J, et al. Evaluation of breast cancer using intravoxel incoherent motion (IVIM) histogram analysis: comparison with malignant status, histological subtype, and molecular prognostic factors. European radiology. 2016;26(8):2547-58. doi:10.1007/s00330-015-4087-3.
17. Hu Y, Yan L, Wu L, Du P, Chen B, Wang L, et al. Intravoxel incoherent motion diffusion-weighted MR imaging of gliomas: efficacy in preoperative grading. Scientific reports. 2014;4:7208. doi:10.1038/srep07208.
18. Paschoal A, Leoni R, Dos Santos A, Paiva F. Intravoxel incoherent motion MRI in neurological and cerebrovascular diseases. NeuroImage Clinical. 2018;20:705-714. doi:10.1016/j.nicl.2018.08.030.
19. França M, Martí-Bonmatí L, Alberich-Bayarri Á, Oliveira P, Guimaraes S, Oliveira J, et al. Evaluation of fibrosis and inflammation in diffuse liver diseases using intravoxel incoherent motion diffusion-weighted MR imaging. Abdominal radiology (New York). 2017;42(2):468-477. doi:10.1007/s00261-016-0899-0.
20. Yoon J, Lee J, Lee K, Kim S, Kang M, Jang J, et al. Pancreatic Steatosis and Fibrosis: Quantitative Assessment with Preoperative Multiparametric MR Imaging. Radiology. 2016;279(1):140-50. doi:10.1148/radiol.2015142254.
21. Jones K, Michel K, Bankson J, Fuller C, Klopp A, Venkatesan A. Emerging Magnetic Resonance Imaging Technologies for Radiation Therapy Planning and Response Assessment. International journal of radiation oncology, biology, physics. 2018;101(5):1046-1056. doi:10.1016/j.ijrobp.2018.03.028.
22. Zhang J, Lee V. Renal perfusion imaging by MRI. Journal of magnetic resonance imaging : JMRI. 2020;52(2):369-379. doi:10.1002/jmri.26911.
23. Federau C. Intravoxel incoherent motion MRI as a means to measure in vivo perfusion: A review of the evidence. NMR in biomedicine. 2017;30(11). doi:10.1002/nbm.3780.
24. Ma W, Wei M, Han Z, Tang Y, Pan Q, Zhang G, et al. The added value of intravoxel incoherent motion diffusion weighted imaging parameters in differentiating high-grade pancreatic neuroendocrine neoplasms from pancreatic ductal adenocarcinoma. Oncology letters. 2019;18(5):5448-5458. doi:10.3892/ol.2019.10863.
25. Kim B, Lee S, Sung Y, Cheong H, Byun J, Kim H, et al. Intravoxel incoherent motion diffusion-weighted imaging of the pancreas: Characterization of benign and malignant pancreatic pathologies. Journal of magnetic resonance imaging : JMRI. 2017;45(1):260-269. doi:10.1002/jmri.25334.
26. Klauss M, Gaida M, Lemke A, Grünberg K, Simon D, Wente M, et al. Fibrosis and pancreatic lesions: counterintuitive behavior of the diffusion imaging-derived structural diffusion coefficient d. Investigative radiology. 2013;48(3):129-33. doi:10.1097/RLI.0b013e31827ac0f1.
27. Klaassen R, Steins A, Gurney-Champion O, Bijlsma M, van Tienhoven G, Engelbrecht M, et al. Pathological validation and prognostic potential of quantitative MRI in the characterization of pancreas cancer: preliminary experience. Molecular oncology. 2020. doi:10.1002/1878-0261.12688.