Understanding how the brain develops during adolescence is important for evaluating neuronal developments that affect mental health throughout the lifespan. This study uses 3-tissue constrained spherical deconvolution (3T-CSD) to examine the relationship between brain diffusion microstructure in deep white matter ROIs and pubertal development in a cross-sectional group of 4752 adolescents. An anisotropic diffusion signal fraction was found to have a negative correlation, while an intracellular isotropic diffusion signal fraction had a positive correlation with pubertal development across the majority of axonal ROIs. These results provide evidence for complex microstructural changes in brain development within the white matter skeleton.
1. Lerner, R. M. & Steinberg, L., (2009). Handbook of adolescent psychology, volume 1: Individual bases of adolescent development. s.l.:John Wiley & Sons.
2. Juraska, J. M. & Willing, J., (2017). Pubertal onset as a critical transition for neural development and cognition. Brain Research, Volume 1654, pp. 87-94.
3. Genc, S., Seal, M. L., Dhollander, T., Malpas, C. B., Hazell, P., & Silk, T. J. (2017). White matter alterations at pubertal onset. NeuroImage, 156, 286-292.
4. Genc, S., Malpas, C. B., Gulenc, A., Sciberras, E., Efron, D., Silk, T. J., & Seal, M. L. (2020). Longitudinal patterns of white matter fibre density and morphology in children are associated with age and pubertal stage. Developmental cognitive neuroscience, 45, 100853.
5. Barendse, M. E., Simmons, J. G., Smith, R. E., Seal, M. L., & Whittle, S. (2020). Adrenarcheal hormone-related development of white matter during late childhood. NeuroImage, 223, 117320.
6. Peper, J. S., Pol, H. H., Crone, E. A. & Van Honk, J., (2011). Sex steroids and the brain structure in pubertal boys and girls: a mini-review of neuroimaging studies. Neuroscience, Volume 191, pp. 28-37.
7. Lebel, C. & Beaulieu, C., (2011). Longitudinal development of human brain wiring continues from childhood into adulthood. Journal of Neuroscience, Volume 31, pp. 10937-10947.
8. Lebel, C. & Deoni, S., (2018). The development of brain white matter microstructure. NeuroImage, Volume 182, pp. 207-218.
9. Nave, K. A. (2010). Myelination and support of axonal integrity by glia. Nature, 468(7321), 244-252.
10. Volkow, N. D., Koob, G. F., Croyle, R. T., Bianchi, D. W., Gordon, J. A., Koroshetz, W. J., ... & Deeds, B. G. (2018). The conception of the ABCD study: From substance use to a broad NIH collaboration. Developmental cognitive neuroscience, 32, 4-7.
11. Newman, B. T., Dhollander, T., & Druzgal, T. J., (2020). Single-shell derived tissue signal fraction maps show increased contrast between hippocampal subfields compared to multi-shell analysis. 28th Annual International Meeting Society of Magnetic Resonance in Medicine, 28, 4424
12. Dhollander, T., & Connelly, A. (2016). A novel iterative approach to reap the benefits of multi-tissue CSD from just single-shell (+ b= 0) diffusion MRI data. In Proc ISMRM (Vol. 24, p. 3010).
13. Tournier, J. D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., ... & Connelly, A. (2019). MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. NeuroImage, 202, 116137.
14. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., ... & Niazy, R. K. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23, S208-S219.
15. Veraart, J., Novikov, D. S., Christiaens, D., Ades-Aron, B., Sijbers, J., & Fieremans, E. (2016). Denoising of diffusion MRI using random matrix theory. Neuroimage, 142, 394-406.
16. Kellner, E., Dhital, B., Kiselev, V. G., & Reisert, M. (2016). Gibbs‐ringing artifact removal based on local subvoxel‐shifts. Magnetic resonance in medicine, 76(5), 1574-1581.
17. Andersson, J. L., Skare, S., & Ashburner, J. (2003). How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage, 20(2), 870-888.
18. Andersson, J. L., Graham, M. S., Zsoldos, E., & Sotiropoulos, S. N. (2016). Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. Neuroimage, 141, 556-572.
19. Andersson, J. L., & Sotiropoulos, S. N. (2016). An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage, 125, 1063-1078.
20. Greenspan, H. (2009). Super-resolution in medical imaging. The computer journal, 52(1), 43-63.
21. Dhollander, T., Mito, R., Raffelt, D., & Connelly, A. (2019). Improved white matter response function estimation for 3-tissue constrained spherical deconvolution. In Proc. Intl. Soc. Mag. Reson. Med (Vol. 555).
22. Mori, S., Wakana, S., Van Zijl, P. C., & Nagae-Poetscher, L. M. (2005). MRI atlas of human white matter. Elsevier.
23. Wakana, S., Caprihan, A., Panzenboeck, M. M., Fallon, J. H., Perry, M., Gollub, R. L., ... & Blitz, A. (2007). Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage, 36(3), 630-644.
24. Hua, K., Zhang, J., Wakana, S., Jiang, H., Li, X., Reich, D. S., ... & Mori, S. (2008). Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage, 39(1), 336-347.
25. Newman, B. T., Untaroiu, A., & Druzgal, T. J. A novel diffusion registration method with the NTU-DSI-122 template to transform free water signal fraction maps to stereotaxic space. 28th Annual International Meeting Society of Magnetic Resonance in Medicine, 28, 4541.
26. Shirtcliff, E. A., Dahl, R. E., & Pollak, S. D. (2009). Pubertal development: correspondence between hormonal and physical development. Child development, 80(2), 327-337.
27. Paus, T. (2010). Growth of white matter in the adolescent brain: myelin or axon?. Brain and cognition, 72(1), 26-35.
28. Willing, J., & Juraska, J. M. (2015). The timing of neuronal loss across adolescence in the medial prefrontal cortex of male and female rats. Neuroscience, 301, 268-275.