2038

Nonparametric D(Ω)-distributions for model-free analysis of b(Ω)-encoded multidimensional diffusion MRI on ex vivo rat brain
Omar Narvaez1, Maxime Yon2, Alejandra Sierra1, and Daniel Topgaard3
1A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland, 2CEMHTI, French National Centre for Scientific Research, Paris, France, 3Department of Chemistry, Lund University, Lund, Sweden

Synopsis

Nonparametric distributions of cell sizes or diffusion tensors have recently been applied to analyze clinically relevant data acquired with advanced diffusion encoding schemes building on oscillating gradients, targeting the frequency-dependence and cell size, or more general q-vector trajectories focusing on the tensorial aspects. We introduce nonparametric D(ω)-distributions as a joint analysis framework taking both frequency-dependence and tensorial properties into account, and demonstrate the approach with ex vivo rat brain data acquired with gradient waveforms exploring the relevant dimensions of the tensor-valued encoding spectrum b(ω).

Introduction

Distributions of scalar diffusivities (1) and compartment sizes (2), combined with data acquisition probing the diffusion time (3) and spectral content (4,5), have a long history in diffusion NMR spectroscopy (6) for investigations of multicomponent solutions and heterogeneous materials. While early studies relied on parametric distributions, such as bimodal (1) and log-normal (2), the development of efficient data inversion algorithms (7,8) enabled estimation of nonparametric distributions of diffusivities (9,10) and compartment sizes (11,12) for samples where the functional forms of the distributions are unknown, albeit at the expense of increasing the sensitivity to noise and the risks of overfitting.

Taking the anisotropy and sub-voxel heterogeneity of brain tissues into account, distributions of diffusion tensors D have been proposed for analysis of diffusion MRI data (13,14). Similarly to the development path in NMR, the early parametric distributions (13,14) were followed by nonparametric ones (15), here however only after translating isotropic-anisotropic correlation strategies from solid-state NMR spectroscopy (16) into a diffusion context (17-19).

Motivated by the recent surge of papers with human in vivo studies focusing on either the encoding frequency ω (20-25) or the anisotropy (“shape”) of the encoding tensor b (26-35), as well as pre-clinical studies indicating the potential value of a combined approach (36,37), we here introduce nonparametric D(ω)-distributions for model-free analysis of b(ω)-encoded data (38,39) and demonstrate the method on ex vivo rat brain.

Methods

A healthy adult rat was intracardially perfused with 0.9% saline followed by 4% paraformaldehyde. After extraction, the brain was sagittally sectioned and placed in a solution of phosphate buffer saline (PBS) 0.1 M and gadoteric acid (Dotarem 279.3 mg/ml; Guerbet) 24 h before scanning. During the scan, the brain was immersed in perfluoropolyether (Galden; TMC Industries).

MRI was performed on a Bruker Avance-III HD 500 MHz spectrometer equipped with an 11.7 T magnet and a MIC-5 gradient probe giving 3 T/m gradients on-axis. Images were acquired at 90 µm3 isometric resolution and 111×111×10 matrix size using Bruker’s multi-slice multi-echo (MSME) sequence customized for diffusion encoding with general gradient waveforms according to the scheme in Fig 1. After image reconstruction in Bruker’s ParaVision, the data was exported to MRtrix (40) for denoising and Matlab (41) for analysis.

The previous D-distributions (13,14,18,42) are here modified to include a simple Lorentzian ω-dependence of the tensor eigenvalues, corresponding to exponential velocity autocorrelation function with decay rate Γ(43). By constraining the tensor shapes to axisymmetric ones (44), each component of the distribution is described by its weight w, the ω-dependent axial and radial eigenvalues, DA(ω) and DR(ω), and the polar and azimuthal angles, θ and Φ. Within the Lorentzian approximation, the ω-dependence is given by DA/R(ω) = D – [DD0,A/R]/(1 + ω2/ ΓA/R2), where D = DA/R(ω → ∞) and D0,A/R = DA/R(ω= 0). The b(ω)-encoded signal for a single component is proportional to wexp(–β) where β is obtained by numerical integration of the generalized scalar product b(ω):D(ω) over ω (39).

Following our earlier works (42,45-47), Monte Carlo inversion (48) is used to estimate ensembles of distributions consistent with the measured data. For generating parameters maps, the distributions in the primary analysis space [D0,A,D0,R,θ,Φ,DAR] are evaluated for selected values of ω, giving [DA(ω),DR(ω),θ,Φ], and transformed to the dimensions of isotropic diffusivity Diso(ω) = (DA(ω) + 2DR(ω))/3 and squared normalized anisotropy DΔ(ω)2 = (DA(ω) – DR(ω))2/(DA(ω) + 2DR(ω))2 (49), as well as the lab-frame diagonal values Dxx(ω), Dyy(ω), and Dzz(ω). Parameter maps are then calculated as means E[x], variances Var[x], and covariances Cov[x,y] over relevant dimensions and sub-divisions (“bins”) of the distribution space (15).

Results & Discussion

Figure 2 shows D(ω)-distributions for selected voxels in ex vivo rat brain. The results for pure white matter (WM), gray matter (GM), and PBS voxels (WM: low Diso and high DΔ2, GM: low Diso and low DΔ2, and PBS: high Diso and low DΔ2) are used to define three bins in the Diso-DΔ2 plane and generate maps of nominally tissue type-specific per-bin signal fractions and diffusion metrics (see Figure 3) consistent with earlier in vivo results (42). The ω-dependence of the metrics is reported in Figure 4, reproducing earlier observations obtained with oscillating gradients (50) – particularly striking for the pyramidal cell layer in hippocampus. In comparison to state-of-the-art oscillating gradient protocols (5), the herein investigated range of ω is however rather limited, which could be remedied by inclusion of additional waveforms optimized to move the spectral content of b(ω) to the lowest and highest values of ω within the constraints of gradient strength and echo time.

Conclusions & Outlook

The nonparametric D(ω)-distributions are here introduced as a general framework for analysis of b(ω)-encoded diffusion MRI data including aspects of both oscillating gradients and tensor-valued encoding. The per-voxel distributions for ex vivo rat brain give parameter maps consistent with literature data. In light of recent impressive results with either oscillating gradients or b-tensor encoding in clinically relevant cases, such as breast tumors (24,25), ischemic stroke (21), multiple sclerosis (33), epilepsy (34), and brain tumors (35), using essentially identical pulse sequences with only minor differences in diffusion gradient waveforms, we foresee that the two approaches will eventually be merged and, for instance, analyzed with our novel nonparametric distributions.

Acknowledgements

This work was financially supported the Swedish Foundation for Strategic Research (ITM17-0267) and Swedish Research Council (2018-03697), Academy of Finland (#323385) and Erkko Foundation. DT owns shares in Random Walk Imaging AB (Lund, Sweden, http://www.rwi.se/), holding patents related to the described methods.

References

1. Boss BD, Stejskal EO, Ferry JD. Self-diffusion in high molecular weight polyisobutylene-benzene mixtures determined by the pulsed-gradient, spin-echo method. J Phys Chem 1967;71:1501-1506.

2. Packer KJ, Rees C. Pulsed NMR studies of restricted diffusion. I. Droplet size distributions in emulsions. J Colloid Interface Sci 1972;40:206-218.

3. Woessner DE. N.M.R. spin-echo self-diffusion measurements on fluids undergoing restricted diffusion. J Phys Chem 1963;67:1365-1367.

4. Stepišnik J. Analysis of NMR self-diffusion measurements by a density matrix calculation. Physica B 1981;104:305-364. doi: 10.1016/0378-4363(81)90182-0

5. Aggarwal M. Restricted diffusion and spectral content of the gradient waveforms. In: Topgaard D, (Ed.). Advanced Diffusion Encoding Methods in MRI, New Developments in NMR. Cambridge, UK: Royal Society of Chemistry; 2020. p 103 - 122. doi: 10.1039/9781788019910-00103

6. Stilbs P. Fourier transform pulsed-gradient spin-echo studies of molecular diffusion. Prog Nucl Magn Reson Spectrosc 1987;19:1-45.

7. Provencher SW. CONTIN: A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Computer Phys Comm 1982;27:229-242. doi: 10.1016/0010-4655(82)90174-6

8. Provencher SW. A constrained regularization method for inverting data represented by linear algebraic or integral equations. Computer Phys Comm 1982;27:213-227. doi: 10.1016/0010-4655(82)90173-4

9. Morris KF, Johnson Jr CS. Diffusion-ordered two-dimensional nuclear magnetic resonance spectroscopy. J Am Chem Soc 1992;114:3139-3141.

10. Håkansson B, Nydén M, Söderman O. The influence of polymer molecular-weight distributions on pulsed field gradient nuclear magnetic resonance self-diffusion. Colloid Polym Sci 2000;278:399-405.

11. Topgaard D, Söderman O. Experimental determination of pore size and shape using q-space NMR microscopy in the long diffusion-time limit. Magn Reson Imaging 2003;21:69-76.

12. Benjamini D, Komlosh ME, Basser PJ, Nevo U. Nonparametric pore size distribution using d-PFG: Comparison to s-PFG and migration to MRI. J Magn Reson 2014;246:36-45. doi: 10.1016/j.jmr.2014.06.017

13. Basser PJ, Pajevic S. A normal distribution for tensor-valued random variables: applications to diffusion tensor MRI. IEEE Trans Med Imaging 2003;22:785-794. doi: 10.1109/TMI.2003.815059

14. Jian B, Vemuri BC, Özarslan E, Carney PR, Mareci TH. A novel tensor distribution model for the diffusion-weighted MR signal. Neuroimage 2007;37:164-176. doi: 10.1016/j.neuroimage.2007.03.074

15. Topgaard D. Diffusion tensor distribution imaging. NMR Biomed 2019;32:e4066. doi: 10.1002/nbm.4066

16. Schmidt-Rohr K, Spiess HW. Multidimensional solid-state NMR and polymers. San Diego: Academic Press; 1994.

17. Eriksson S, Lasič S, Topgaard D. Isotropic diffusion weighting by magic-angle spinning of the q-vector in PGSE NMR. J Magn Reson 2013;226:13-18. doi: 10.1016/j.jmr.2012.10.015

18. de Almeida Martins JP, Topgaard D. Two-dimensional correlation of isotropic and directional diffusion using NMR. Phys Rev Lett 2016;116:087601. doi: 10.1103/PhysRevLett.116.087601

19. Topgaard D. Multidimensional diffusion MRI. J Magn Reson 2017;275:98-113. doi: 10.1016/j.jmr.2016.12.007

20. Baron CA, Beaulieu C. Oscillating gradient spin-echo (OGSE) diffusion tensor imaging of the human brain. Magn Reson Med 2014;72:726-736. doi: 10.1002/mrm.24987

21. Baron CA, Kate M, Gioia L, Butcher K, Emery D, Budde M, Beaulieu C. Reduction of diffusion-weighted imaging contrast of acute ischemic stroke at short diffusion times. Stroke 2015;46:2136-2141. doi: 10.1161/STROKEAHA.115.008815

22. Tetreault P, Harkins KD, Baron CA, Stobbe R, Does MD, Beaulieu C. Diffusion time dependency along the human corpus callosum and exploration of age and sex differences as assessed by oscillating gradient spin-echo diffusion tensor imaging. Neuroimage 2020;210:116533. doi: 10.1016/j.neuroimage.2020.116533

23. Arbabi A, Kai J, Khan AR, Baron CA. Diffusion dispersion imaging: Mapping oscillating gradient spin-echo frequency dependence in the human brain. Magn Reson Med 2020;83:2197-2208. doi: 10.1002/mrm.28083

24. Xu J, Jiang X, Li H, Arlinghaus LR, McKinley ET, Devan SP, Hardy BM, Xie J, Kang H, Chakravarthy AB, Gore JC. Magnetic resonance imaging of mean cell size in human breast tumors. Magn Reson Med 2020;83:2002-2014. doi: 10.1002/mrm.28056

25. Xu J, Jiang X, Devan SP, Arlinghaus LR, McKinley ET, Xie J, Zu Z, Wang Q, Chakravarthy AB, Wang Y, Gore JC. MRI-cytometry: Mapping nonparametric cell size distributions using diffusion MRI. Magn Reson Med 2020. doi: 10.1002/mrm.28454

26. Szczepankiewicz F, Lasič S, van Westen D, Sundgren PC, Englund E, Westin C-F, Ståhlberg F, Lätt J, Topgaard D, Nilsson M. Quantification of microscopic diffusion anisotropy disentangles effects of orientation dispersion from microstructure: Applications in healthy volunteers and in brain tumors. Neuroimage 2015;104:241-252.

27. Westin C-F, Knutsson H, Pasternak O, Szczepankiewicz F, Özarslan E, van Westen D, Mattisson C, Bogren M, O'Donnell L, Kubicki M, Topgaard D, Nilsson M. Q-space trajectory imaging for multidimensional diffusion MRI of the human brain. Neuroimage 2016;135:345-362.

28. Szczepankiewicz F, van Westen D, Englund E, Westin C-F, Ståhlberg F, Lätt J, Sundgren PC, Nilsson M. The link between diffusion MRI and tumor heterogeneity: Mapping cell eccentricity and density by diffusional variance decomposition (DIVIDE). Neuroimage 2016;142:522-532.

29. Lampinen B, Szczepankiewicz F, Mårtensson J, van Westen D, Sundgren PC, Nilsson M. Neurite density imaging versus imaging of microscopic anisotropy in diffusion MRI: A model comparison using spherical tensor encoding. Neuroimage 2017;147:517-531. doi: 10.1016/j.neuroimage.2016.11.053

30. Lampinen B, Szczepankiewicz F, Novén M, van Westen D, Hansson O, Englund E, Mårtensson J, Westin CF, Nilsson M. Searching for the neurite density with diffusion MRI: Challenges for biophysical modeling. Hum Brain Mapp 2019;40:2529-2545. doi: 10.1002/hbm.24542

31. Nery F, Szczepankiewicz F, Kerkela L, Hall MG, Kaden E, Gordon I, Thomas DL, Clark CA. In vivo demonstration of microscopic anisotropy in the human kidney using multidimensional diffusion MRI. Magn Reson Med 2019;82:2160-2168. doi: 10.1002/mrm.27869

32. Szczepankiewicz F, Sjölund J, Ståhlberg F, Lätt J, Nilsson M. Tensor-valued diffusion encoding for diffusional variance decomposition (DIVIDE): Technical feasibility in clinical MRI systems. PLOS One 2019;14:e0214238. doi: 10.1371/journal.pone.0214238

33. Andersen KW, Lasič S, Lundell H, Nilsson M, Topgaard D, Sellebjerg F, Szczepankiewicz F, Siebner HR, Blinkenberg M, Dyrby TB. Disentangling white-matter damage from physiological fiber orientation dispersion in multiple sclerosis. Brain Commun 2020;2:fcaa077. doi: 10.1093/braincomms/fcaa077

34. Lampinen B, Zampeli A, Björkman-Burtscher IM, Szczepankiewicz F, Kallen K, Compagno Strandberg M, Nilsson M. Tensor-valued diffusion MRI differentiates cortex and white matter in malformations of cortical development associated with epilepsy. Epilepsia 2020. doi: 10.1111/epi.16605

35. Nilsson M, Szczepankiewicz F, Brabec J, Taylor M, Westin CF, Golby A, van Westen D, Sundgren PC. Tensor-valued diffusion MRI in under 3 minutes: an initial survey of microscopic anisotropy and tissue heterogeneity in intracranial tumors. Magn Reson Med 2020;83:608-620. doi: 10.1002/mrm.27959

36. Nielsen JS, Dyrby TB, Lundell H. Magnetic resonance temporal diffusion tensor spectroscopy of disordered anisotropic tissue. Sci Rep 2018;8:2930. doi: 10.1038/s41598-018-19475-y

37. Lundell H, Nilsson M, Dyrby TB, Parker GJM, Cristinacce PLH, Zhou FL, Topgaard D, Lasič S. Multidimensional diffusion MRI with spectrally modulated gradients reveals unprecedented microstructural detail. Sci Rep 2019;9:9026. doi: 10.1038/s41598-019-45235-7

38. Topgaard D. Multiple dimensions for random walks. J Magn Reson 2019;306:150-154. doi: 10.1016/j.jmr.2019.07.024

39. Lundell H, Lasič S. Diffusion encoding with general gradient waveforms. In: Topgaard D, (Ed.). Advanced Diffusion Encoding Methods in MRI. Cambridge, UK: Royal Society of Chemistry; 2020. p 12-67. doi: 10.1039/9781788019910-00012

40. Tournier JD, Calamante F, Connelly A. MRtrix: Diffusion tractography in crossing fiber regions. Int J Imaging Syst Technol 2012;22:53-66. doi: 10.1002/ima.22005

41. Matlab R2018b. Natick, MA: The MathWorks.

42. Yon M, de Almeida Martins JP, Bao Q, Budde MD, Frydman L, Topgaard D. Diffusion tensor distribution imaging of an in vivo mouse brain at ultra-high magnetic field by spatiotemporal encoding. NMR Biomed 2020;33:e4355. doi: 10.1002/nbm.4355

43. Uhlenbeck GE, Ornstein LC. On the theory of Brownian motion. Phys Rev 1930;36.

44. Eriksson S, Lasič S, Nilsson M, Westin C-F, Topgaard D. NMR diffusion encoding with axial symmetry and variable anisotropy: Distinguishing between prolate and oblate microscopic diffusion tensors with unknown orientation distribution. J Chem Phys 2015;142:104201. doi: 10.1063/1.4913502

45. de Almeida Martins JP, Topgaard D. Multidimensional correlation of nuclear relaxation rates and diffusion tensors for model-free investigations of heterogeneous anisotropic porous materials. Sci Rep 2018;8:2488. doi: 10.1038/s41598-018-19826-9

46. de Almeida Martins JP, Tax CMW, Szczepankiewicz F, Jones DK, Westin C-F, Topgaard D. Transferring principles of solid-state and Laplace NMR to the field of in vivo brain MRI. Magn Reson 2020;1:2743. doi: 10.5194/mr-1-27-2020

47. Reymbaut A, Critchley J, Durighel G, Sprenger T, Sughrue M, Bryskhe K, Topgaard D. Towards non-parametric diffusion-T1 characterization of crossing fibers in the human brain. Magn Reson Med 2020;Accepted. doi: 10.1002/mrm.28604

48. Prange M, Song YQ. Quantifying uncertainty in NMR T2 spectra using Monte Carlo inversion. J Magn Reson 2009;196:54-60. doi: 10.1016/j.jmr.2008.10.008

49. Conturo TE, McKinstry RC, Akbudak E, Robinson BH. Encoding of anisotropic diffusion with tetrahedral gradients: A General mathematical diffusion formalism and experimental results. Magn Reson Med 1996;35:399-412. doi: 10.1002/mrm.1910350319

50. Aggarwal M, Jones MV, Calabresi PA, Mori S, Zhang J. Probing mouse brain microstructure using oscillating gradient diffusion MRI. Magn Reson Med 2012;67:98-109.

51. Frydman L, Chingas GC, Lee YK, Grandinetti PJ, Eastman MA, Barrall GA, Pines A. Variable-angle correlation spectroscopy in solid-state nuclear magnetic resonance. J Chem Phys 1992;97:4800-4808.

52. Topgaard D. Director orientations in lyotropic liquid crystals: Diffusion MRI mapping of the Saupe order tensor. Phys Chem Chem Phys 2016;18:8545-8553. doi: 10.1039/c5cp07251d

Figures

Figure 1. Acquisition scheme for b(ω)-encoded diffusion MRI. The figure shows the magnitude b, normalized anisotropy bΔ (44), orientation (θ,Φ), and root-mean-square frequency ωrms of the tensor-valued encoding spectrum b(ω) (38,39) vs. the acquisition number nacq. Diffusion gradients are derived from the variable-angle modification (51,52) of magic-angle spinning of the q-vector (17) using 8 ms waveform duration.

Figure 2. Results for representative individual voxels (crosses on the S(b = 0) map) in an ex vivo rat brain at 90 µm3 isometric resolution. The D(ω)-distributions, shown as projections onto the 2D plane of isotropic diffusivity Diso and squared normalized anisotropy DΔ2 with gray scale of contour lines given by the frequency ω, are estimated from the b(ω)-encoded signals (circles: measured, points: fit) by Monte Carlo inversion (45,48). Segmentation into tissue types is performed by defining bins in the Diso-DΔ2 plane and calculating per-bin signal fractions fbin1, fbin2, and fbin3.

Figure 3. Maps derived from the per-voxel D(ω)-distributions for a selected encoding frequency ω/2π = 80 Hz. (a) Synthesized T2- and diffusion-weighted images, S(b = 0) and S(b = 2×109 sm–2), and signal fractions [fbin1,fbin2,fbin3] coded into RGB color. (b) Bin-resolved signal fractions and means E[x] of the diffusion metrics coded into image brightness and color. Color-coding of orientation derives from the lab-frame diagonal values [Dxx,Dyy,Dzz] normalized by the maximum eigenvalue D33. (c) Per-voxel mean E[x], variance Var[x], and covariance Cov[x,y] of Diso and DΔ2.

Figure 4. Per-voxel statistical descriptors E[x], Var[x], and Cov[x,y] over the Diso and DΔ2 dimensions of the D(ω)-distributions for two selected frequencies ω/2π = 80 and 180 Hz (top and middle rows) and the rate of change with frequency Δω/2π of the various metrics (bottom row). The white arrow indicates the hippocampus with elevated values of Δω/2πE[Diso] in the pyramidal and granule cell layer.

Proc. Intl. Soc. Mag. Reson. Med. 29 (2021)
2038