The acquisition and modelling of diffusion MRI (dMRI) data offer many opportunities to explore the organization of the brain. A variety of methods has been proposed to this end, but their generalizability to different diffusion encodings and stronger gradients remains unknown. In the MEMENTO challenge, we asked participants to predict dMRI signals collected with single, double and double oscillating diffusion encodings in combination with a variety of weighting parameters. We received eighty-three submissions ranging from signal representations to multicompartment models and deep learning-based predictions, which offer a unique perspective to investigate the status quo of the field.
1. Alexander, A. L., Lee, J. E., Lazar, M. & Field, A. S. Diffusion tensor imaging of the brain. Neurotherapeutics 4, 316–29 (2007).
2. Le Bihan, D. Diffusion MRI: What water tells us about the brain. EMBO Mol. Med. 6, 569–573 (2014).
3. Stejskal, E. O. & Tanner, J. E. Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient. J. Chem. Phys. 42, (1965).
4. Shemesh, N. et al. Conventions and nomenclature for double diffusion encoding NMR and MRI. Magn. Reson. Med. 75, 82–87 (2016).
5. Ianuş, A., Shemesh, N., Alexander, D. C. & Drobnjak, I. Double oscillating diffusion encoding and sensitivity to microscopic anisotropy. Magn. Reson. Med. 78, 550–564 (2017).
6. Froeling, M., Tax, C. M. W., Vos, S. B., Luijten, P. R. & Leemans, A. ‘MASSIVE’ brain dataset: Multiple acquisitions for standardization of structural imaging validation and evaluation. Magn. Reson. Med. 77, 1797–1809 (2017).
7. Ianuş, A. et al. Accurate estimation of microscopic diffusion anisotropy and its time dependence in the mouse brain. Neuroimage 183, 934–949 (2018).
8. Lazowski, N., Ramos, M. & Rodrigues, P. Web-cloud platform for storing, processing and analyzing multi-modal neuroimaging data. in ISMRM 2015: 6th Annual Meeting of the Italian Chapter of the International Society for Magnetic Resonance in Medicine. (2015). doi:10.13140/RG.2.2.13285.24803.
9. Sijbers, J. & den Dekker, A. J. Maximum likelihood estimation of signal amplitude and noise variance from MR data. Magn. Reson. Med. 51, 586–94 (2004).
10. Le Bihan, D. et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168, 497–505 (1988).
11. Tax, C. M. W., Szczepankiewicz, F., Nilsson, M. & Jones, D. K. The dot-compartment revealed? Diffusion MRI with ultra-strong gradients and spherical tensor encoding in the living human brain.Neuroimage 210, 116534 (2020).
12. Zhang, H. G., Schneider, T., Wheeler-Kingshott, C. a & Alexander, D. C. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61, 1000–16 (2012).
13. Palombo, M. et al. SANDI: A compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI. Neuroimage 215, 116835 (2020).
14. Basser, P. J., Mattiello, J. & LeBihan, D. MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–67 (1994).
15. Jensen, J. H., Helpern, J. a, Ramani, A., Lu, H. & Kaczynski, K. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn. Reson. Med. 53, 1432–40 (2005).
16. Morez, J., Sijbers, J., Vanhevel, F. & Jeurissen, B. Constrained spherical deconvolution of nonspherically sampled diffusion MRI data. Hum. Brain Mapp. 1–18 (2020) doi:10.1002/hbm.25241.
17. Westin, C. F. et al. Q-space trajectory imaging for multidimensional diffusion MRI of the human brain. Neuroimage 135, 345–362 (2016).
18. Behrens, T. E. J. et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 50, 1077–88 (2003).
19. Fick, R. H. J., Wassermann, D. & Deriche, R. The Dmipy Toolbox: Diffusion MRI Multi-Compartment Modeling and Microstructure Recovery Made Easy. Front. Neuroinform. 13, 1–26 (2019).
20. Sotiropoulos, S. N., Behrens, T. E. J. & Jbabdi, S. Ball and rackets: Inferring fiber fanning from diffusion-weighted MRI. Neuroimage 60, 1412–1425 (2012).
21. Tariq, M., Schneider, T., Alexander, D. C., Gandini Wheeler-Kingshott, C. A. & Zhang, H. Bingham-NODDI: Mapping anisotropic orientation dispersion of neurites using diffusion MRI. Neuroimage 133, 207–223 (2016).
22. Kaden, E., Kelm, N. D., Carson, R. P., Does, M. D. & Alexander, D. C. Multi-compartment microscopic diffusion imaging. Neuroimage 139, 346–359 (2016).
23. Alexander, D. C. et al. Orientationally invariant indices of axon diameter and density from diffusion MRI. Neuroimage 52, 1374–89 (2010).
24. Ozarslan, E., Koay, C. G., Shepherd, T. M., Blackband, S. J. & Basser, P. J. Simple harmonic oscillator based reconstruction and estimation for three-dimensional q-space MRI. in (2009).
25. Nath, V. et al. Enabling multi-shell b-value generalizability of data-driven diffusion models with deep SHORE. arXiv 1–9 (2019).
26. Özarslan, E. et al. Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure. Neuroimage 78, 16–32 (2013).
27. Fick, R. H. J., Wassermann, D., Caruyer, E. & Deriche, R. MAPL: Tissue microstructure estimation using Laplacian-regularized MAP-MRI and its application to HCP data. Neuroimage 134, 365–385 (2016).
28. Garyfallidis, E. et al. Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinform. 8, 1–17 (2014).
29. Willia, R. J. Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning. Mach. Learn. 8, 229–256 (1992).
30. Zoph, B. & Le, Q. V. Neural architecture search with reinforcement learning. 5th Int. Conf. Learn. Represent. ICLR 2017 - Conf. Track Proc. 1–16 (2017).