Spiral diffusion weighted imaging (DWI) with field monitoring and iterative reconstruction offers potentially reduced echo time (TE) and higher effective resolution (less blurring) compared to EPI. Coupled with a scanner with ultra-strong gradients, it enabled an 800 µm DWI protocol for imaging fine structures of the brain in vivo. Compared to EPI, the shorter TEs provided distinctly different contrast in iron-rich areas (U-fibres and sub-cortical nuclei), which could enhance investigations of these regions. The protocol did, however, come with a reduction in SNR/(unit time) compared to EPI due to differences in readout time.
[1] Alexander, D.C., Dyrby, T.B., Nilsson, M., Zhang, H. (2019), "Imaging brain microstructure with diffusion MRI: practicality and applications", NMR Biomed. https://doi.org/10.1002/nbm.3841
[2] Edwards, L.J., Kirilina, E., Mohammadi, S., Weiskopf, N. (2018), "Microstructural imaging of human neocortex in vivo", Neuroimage. https://doi.org/10.1016/j.neuroimage.2018.02.055
[3] Keuken, M.C., Bazin, P.-L., Crown, L., Hootsmans, J., Laufer, A., Müller-Axt, C., Sier, R., van der Putten, E.J., Schäfer, A., Turner, R., Forstmann, B.U. (2014), "Quantifying inter-individual anatomical variability in the subcortex using 7T structural MRI", Neuroimage. https://doi.org/10.1016/j.neuroimage.2014.03.032
[4] Movahedian Attar, F., Kirilina, E., Haenelt, D., Pine, K.J., Trampel, R., Edwards, L.J., Weiskopf, N. (2020), "Mapping Short Association Fibers in the Early Cortical Visual Processing Stream Using In Vivo Diffusion Tractography", Cereb. Cortex. https://doi.org/10.1093/cercor/bhaa049
[5] Delattre, B.M.A., Heidemann, R.M., Crowe, L.A., Vallée, J.-P., Hyacinthe, J.-N. (2010), "Spiral demystified", Magn. Reson. Imaging. https://doi.org/10.1016/j.mri.2010.03.036
[6] Mueller, L., Rudrapatna, S.U., Tax, C.M.W., Wise, R., Jones D.K. (2019), "Diffusion MRI with b=1000 s/mm2 at TE < 22 ms using single-shot spiral readout and ultra-strong gradients: Implications for microstructure imaging", Proc. Int. Soc. Magn. Reson. Med.
[7] Lee, Y., Wilm, B.J., Brunner, D.O., Gross, S., Schmid, T., Nagy, Z., Pruessmann, K.P. (2020), "On the signal‐to‐noise ratio benefit of spiral acquisition in diffusion MRI". Magn. Reson. Med. https://doi.org/10.1002/mrm.28554
[8] Wilm, B.J., Hennel, F., Roesler, M.B., Weiger, M., Pruessmann, K.P. (2020), "Minimizing the echo time in diffusion imaging using spiral readouts and a head gradient system", Magn Reson Med. https://doi.org/10.1002/mrm.28346
[9] Jones, D.K., Alexander, D.C., Bowtell, R., Cercignani, M., Dell'Acqua, F., McHugh, D.J., Miller, K.L., Palombo, M., Parker, G.J.M., Rudrapatna, U.S., Tax, C.M.W. (2018), "Microstructural imaging of the human brain with a 'super-scanner': 10 key advantages of ultra-strong gradients for diffusion MRI", Neuroimage. https://doi.org/10.1016/j.neuroimage.2018.05.047
[10] Barakovic, M., Tax, C.M.W., Rudrapatna, U.S., Chamberland, M., Rafael-Patino, J., Granziera, C., Thiran, J.P., Daducci, A., Canales-Rodríguez, E.J., Jones, D.K. (2020), "Resolving bundle-specific intra-axonal T2 values within a voxel using diffusion-relaxation tract-based estimation", Neuroimage. https://doi.org/10.1016/j.neuroimage.2020.117617
[11] Deistung, A., Schäfer, A., Schweser, F., Biedermann, U., Turner, R., Reichenbach, J.R. (2013), "Toward in vivo histology: A comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high magnetic field strength", Neuroimage. https://doi.org/10.1016/j.neuroimage.2012.09.055
[12] Kirilina, E., Helbling, S., Morawski, M., Pine, K., Reimann, K., Jankuhn, S., Dinse, J., Deistung, A., Reichenbach, J.R., Trampel, R., Geyer, S., Müller, L., Jakubowski, N., Arendt, T., Bazin, P.-L., Weiskopf, N. (2020), "Superficial white matter imaging: Contrast mechanisms and whole-brain in vivo mapping", Sci. Adv. https://doi.org/10.1126/sciadv.aaz9281
[13] Herbst, M., Deng, W., Ernst, T. and Stenger, V.A. (2017), "Segmented simultaneous multi‐slice diffusion weighted imaging with generalized trajectories", Magn. Reson. Med. https://doi.org/10.1002/mrm.26545
[14] Wilm, B.J., Barmet, C., Pavan, M. and Pruessmann, K.P. (2011), "Higher order reconstruction for MRI in the presence of spatiotemporal field perturbations", Magn. Reson. Med. https://doi.org/10.1002/mrm.22767
[15] Keil, B., Blau, J.N., Biber, S., Hoecht, P., Tountcheva, V., Setsompop, K., Triantafyllou, C. and Wald, L.L. (2013), "A 64‐channel 3T array coil for accelerated brain MRI". Magn. Reson. Med. https://doi.org/10.1002/mrm.24427
[16] Setsompop, K., Kimmlingen, R., Eberlein, E., Witzel, T., Cohen-Adad, J., McNab, J.A., Keil, B., Tisdall, M.D., Hoecht, P., Dietz, P., Cauley, S.F., Tountcheva, V., Matschl, V., Lenz, V.H., Heberlein, K., Potthast, A., Thein, H., Van Horn, J., Toga, A., Schmitt, F., Lehne, D., Rosen, B.R., Wedeen, V., Wald, L.L. (2013), "Pushing the limits of in vivo diffusion MRI for the Human Connectome Project", Neuroimage. https://doi.org/10.1016/j.neuroimage.2013.05.078
[17] Chen, N.-k., Guidon, A., Chang, H.-C., Song, A.W., (2013), "A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE)", Neuroimage. https://doi.org/10.1016/j.neuroimage.2013.01.038
[18] Ma, R., Akçakaya, M., Moeller, S., Auerbach, E., Uğurbil, K., Van de Moortele, P.-F. (2020), "A field-monitoring-based approach for correcting eddy-current-induced artifacts of up to the 2nd spatial order in human-connectome-project-style multiband diffusion MRI experiment at 7T: A pilot study", Neuroimage. https://doi.org/10.1016/j.neuroimage.2020.116861
[19] Setsompop, K., Cohen-Adad, J., Gagoski, B.A., Raij, T., Yendiki, A., Keil, B., Wedeen, V.J., Wald, L.L. (2012), "Improving diffusion MRI using simultaneous multi-slice echo planar imaging", Neuroimage. https://doi.org/10.1016/j.neuroimage.2012.06.033
[20] Griswold, M.A., Jakob, P.M., Heidemann, R.M., Nittka, M., Jellus, V., Wang, J., Kiefer, B. and Haase, A. (2002), "Generalized autocalibrating partially parallel acquisitions (GRAPPA)", Magn. Reson. Med. https://doi.org/10.1002/mrm.10171
[21] Andersson, J. L. Skare, S., Ashburner, J. (2003), "How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging", Neuroimage. https://doi.org/10.1016/S1053-8119(03)00336-7
[22] Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M. "Advances in functional and structural MR image analysis and implementation as FSL", Neuroimage. https://doi.org/10.1016/j.neuroimage.2004.07.051
[23] Mohammadi, S., Möller, H.E., Kugel, H., Müller, D.K. and Deppe, M. (2010), "Correcting eddy current and motion effects by affine whole‐brain registrations: Evaluation of three‐dimensional distortions and comparison with slicewise correction", Magn. Reson. Med. https://doi.org/10.1002/mrm.22501
[24] Veraart, J., Sijbers, J., Sunaert, S., Leemans, A., Jeurissen, B. (2013), "Weighted linear least squares estimation of diffusion MRI parameters: Strengths, limitations, and pitfalls", Neuroimage. https://doi.org/10.1016/j.neuroimage.2013.05.028
[25] Jeurissen, B., Tournier, J.-D., Dhollander, T., Connelly, A., Sijbers, J. (2014), "Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data", Neuroimage. https://doi.org/10.1016/j.neuroimage.2014.07.061
[26] Tournier, J.D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., Christiaens, D., Jeurissen, B., Yeh, C.-H., Connelly, A. (2019) "MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation", Neuroimage. https://doi.org/10.1016/j.neuroimage.2019.116137