Clinical imaging of the oxygen extraction fraction (OEF) is highly promising to improve stratification of patients with various neurological diseases. Measurement of OEF by multiparametric quantitative blood oxygen level dependent (mqBOLD)-MRI could greatly increase clinical applicability compared to the current gold standard PET. Furthermore, oxygen extraction capacity (OEC) has recently emerged as another MRI-based biomarker of cerebral oxygenation. However, studies comparing both MRI techniques to PET reference data are still lacking. Here, we present data from an MRI study in young healthy volunteers, demonstrating good agreement of both, MRI-based OEF and OEC, with PET data from a similar subject group.
1. Toth V, Forschler A, Hirsch NM, et al. MR-based hypoxia measures in human glioma. J Neurooncol 2013; 115: 197-207. 2013/08/07. DOI: 10.1007/s11060-013-1210-7.
2. Hino A, Tenjin H, Horikawa Y, et al. Hemodynamic and metabolic changes after carotid endarterectomy in patients with high-degree carotid artery stenosis. J Stroke Cerebrovasc Dis 2005; 14: 234-238. 2007/10/02. DOI: 10.1016/j.jstrokecerebrovasdis.2005.08.001.
3. Jiang D, Lin Z, Liu P, et al. Normal variations in brain oxygen extraction fraction are partly attributed to differences in end-tidal CO2. J Cereb Blood Flow Metab 2020; 40: 1492-1500. 2019/08/07. DOI: 10.1177/0271678X19867154.
4. Hirsch NM, Toth V, Forschler A, et al. Technical considerations on the validity of blood oxygenation level-dependent-based MR assessment of vascular deoxygenation. NMR Biomed 2014; 27: 853-862. 2014/05/09. DOI: 10.1002/nbm.3131.
5. Christen T, Schmiedeskamp H, Straka M, et al. Measuring brain oxygenation in humans using a multiparametric quantitative blood oxygenation level dependent MRI approach. Magn Reson Med 2012; 68: 905-911. 2011/12/14. DOI: 10.1002/mrm.23283.
6. Kaczmarz S, Hyder F and Preibisch C. Oxygen extraction fraction mapping with multi-parametric quantitative BOLD MRI: Reduced transverse relaxation bias using 3D-GraSE imaging. Neuroimage 2020; 220: 117095. 2020/07/01. DOI: 10.1016/j.neuroimage.2020.117095.
7. Yablonskiy DA and Haacke EM. Theory of NMR signal behavior in magnetically inhomogeneous tissues: The static dephasing regime. Magnetic Resonance in Medicine 1994; 32: 749-763. DOI: https://doi.org/10.1002/mrm.1910320610.
8. Hirsch NM and Preibisch C. T2* mapping with background gradient correction using different excitation pulse shapes. AJNR Am J Neuroradiol 2013; 34: E65-68. 2012/07/28. DOI: 10.3174/ajnr.A3021.
9. Gottler J, Kaczmarz S, Kallmayer M, et al. Flow-metabolism uncoupling in patients with asymptomatic unilateral carotid artery stenosis assessed by multi-modal magnetic resonance imaging. J Cereb Blood Flow Metab 2019; 39: 2132-2143. 2018/07/04. DOI: 10.1177/0271678X18783369.
10. Kaczmarz S, Gottler J, Petr J, et al. Hemodynamic impairments within individual watershed areas in asymptomatic carotid artery stenosis by multimodal MRI. J Cereb Blood Flow Metab 2020: 271678X20912364. 2020/04/03. DOI: 10.1177/0271678X20912364.
11. Mouridsen K, Hansen MB, Ostergaard L, et al. Reliable estimation of capillary transit time distributions using DSC-MRI. J Cereb Blood Flow Metab 2014; 34: 1511-1521. 2014/06/19. DOI: 10.1038/jcbfm.2014.111.
12. Jespersen SN and Ostergaard L. The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism. J Cereb Blood Flow Metab 2012; 32: 264-277. 2011/11/03. DOI: 10.1038/jcbfm.2011.153.
13. Eskildsen SF, Gyldensted L, Nagenthiraja K, et al. Increased cortical capillary transit time heterogeneity in Alzheimer's disease: a DSC-MRI perfusion study. Neurobiol Aging 2017; 50: 107-118. 2016/12/13. DOI: 10.1016/j.neurobiolaging.2016.11.004.
14. Preibisch C, Shi K, Kluge A, et al. Characterizing hypoxia in human glioma: A simultaneous multimodal MRI and PET study. NMR Biomed 2017; 30 2017/08/15. DOI: 10.1002/nbm.3775.
15. Stadlbauer A, Mouridsen K, Doerfler A, et al. Recurrence of glioblastoma is associated with elevated microvascular transit time heterogeneity and increased hypoxia. J Cereb Blood Flow Metab 2018; 38: 422-432. 2017/03/10. DOI: 10.1177/0271678X17694905.
16. Stadlbauer A, Oberndorfer S, Zimmermann M, et al. Physiologic MR imaging of the tumor microenvironment revealed switching of metabolic phenotype upon recurrence of glioblastoma in humans. J Cereb Blood Flow Metab 2020; 40: 528-538. 2019/02/09. DOI: 10.1177/0271678X19827885.
17. Stadlbauer A, Zimmermann M, Doerfler A, et al. Intratumoral heterogeneity of oxygen metabolism and neovascularization uncovers 2 survival-relevant subgroups of IDH1 wild-type glioblastoma. Neuro Oncol 2018; 20: 1536-1546. 2018/05/03. DOI: 10.1093/neuonc/noy066.
18. Hyder F, Herman P, Bailey CJ, et al. Uniform distributions of glucose oxidation and oxygen extraction in gray matter of normal human brain: No evidence of regional differences of aerobic glycolysis. J Cereb Blood Flow Metab 2016; 36: 903-916. 2016/01/13. DOI: 10.1177/0271678x15625349.
19. Christen T, Lemasson B, Pannetier N, et al. Evaluation of a quantitative blood oxygenation level-dependent (qBOLD) approach to map local blood oxygen saturation. NMR Biomed 2011; 24: 393-403. 2010/10/21. DOI: 10.1002/nbm.1603.
20. Ostergaard L, Jespersen SN, Engedahl T, et al. Capillary dysfunction: its detection and causative role in dementias and stroke. Curr Neurol Neurosci Rep 2015; 15: 37. 2015/05/10. DOI: 10.1007/s11910-015-0557-x.
21. Hyder F, Shulman RG and Rothman DL. A model for the regulation of cerebral oxygen delivery. Journal of Applied Physiology 1998; 85: 554-564. DOI: 10.1152/jappl.1998.85.2.554.
22. Kanda T, Fukusato T, Matsuda M, et al. Gadolinium-based Contrast Agent Accumulates in the Brain Even in Subjects without Severe Renal Dysfunction: Evaluation of Autopsy Brain Specimens with Inductively Coupled Plasma Mass Spectroscopy. Radiology 2015; 276: 228-232. 2015/05/06. DOI: 10.1148/radiol.2015142690.
23. Hedderich D, Kluge A, Pyka T, et al. Consistency of normalized cerebral blood volume values in glioblastoma using different leakage correction algorithms on dynamic susceptibility contrast magnetic resonance imaging data without and with preload. J Neuroradiol 2019; 46: 44-51. 2018/05/14. DOI: 10.1016/j.neurad.2018.04.006.
24. Fan AP, Jahanian H, Holdsworth SJ, et al. Comparison of cerebral blood flow measurement with [15O]-water positron emission tomography and arterial spin labeling magnetic resonance imaging: A systematic review. J Cereb Blood Flow Metab 2016; 36: 842-861. 2016/03/06. DOI: 10.1177/0271678X16636393.
25. Fan AP, An H, Moradi F, et al. Quantification of brain oxygen extraction and metabolism with [(15)O]-gas PET: A technical review in the era of PET/MRI. Neuroimage 2020; 220: 117136. 2020/07/08. DOI: 10.1016/j.neuroimage.2020.117136.