Multi-contrast MRI provides a comprehensive picture of tissue microstructure, but the high dimensionality of the parameter space increases scan time. In this work, we present a data-driven approach to multi-contrast MRI experiment design using concrete autoencoders. Concrete autoencoders simultaneously perform measurement subset-selection and learn a prediction of the full set of measurements. This approach was evaluated on two multi-contrast databases encoding diffusion, relaxation, and susceptibility. The results showed similar patterns of measurement-subset selection and mean-squared errors across different training sets. The increasing availability of public multi-contrast MRI databases can further push data-driven approaches in providing recommendations for experiment design.
[1] M. Cercignani, S. Bouyagoub, Brain microstructure by multi-modal MRI: Is the whole greater than the sum of its parts?, NeuroImage 182(2018) 117 – 127.
[2] D. C. Alexander, A general framework for experiment design in diffusion MRI and its application in measuring direct tissue-microstructure features, Magnetic Resonance in Medicine 60 (2) (2008) 439–448.
[3] S. Coelho, J. M. Pozo, S. N. Jespersen, A. F. Frangi, Optimal experimental design for biophysical modelling in multidimensional diffusion MRI, in: D. Shen, T. Liu, T. M. Peters, L. H. Staib, C. Essert, S. Zhou,P.-T. Yap, A. Khan (Eds.), Medical Image Computing and ComputerAssisted Intervention – MICCAI 2019, Springer International Publish-ing, Cham, 2019, pp. 617–625.
[4] B. Lampinen, F. Szczepankiewicz, J. M ̊artensson, D. van Westen,O. Hansson, C.-F. Westin, M. Nilsson, Towards unconstrained compartment modeling in white matter using diffusion-relaxation MRI with tensor-valued diffusion encoding, Magnetic Resonance in Medicine 84 (3)(2020) 1605–1623.
[5] H. Knutsson, Towards optimal sampling in diffusion MRI, in: Interna-tional Conference on Medical Image Computing and Computer-AssistedIntervention, Springer, 2019, pp. 3–18.
[6] J. Hutter, P. J. Slator, D. Christiaens, R. P. A. Teixeira, T. Roberts,L. Jackson, A. N. Price, S. Malik, J. V. Hajnal, Integrated and efficient diffusion-relaxometry using ZEBRA, Scientific reports 8 (1) (2018) 1–13.4
[7] M. Pizzolato, M. Palombo, E. Bonet-Carne, C. M. W. Tax, F. Grussu, A. Ianus, F. Bogusz, T. Pieciak, L. Ning, H. Larochelle, et al., Acquiring and predicting multidimensional diffusion (MUDI) data: An open challenge (2020) 195–208.
[8] J. P. de Almeida Martins, C. M. W. Tax, F. Szczepankiewicz, D. K. Jones, C.-F. Westin, D. Topgaard, Transferring principles of solid-stateand laplace nmr to the field of in vivo brain mri, Magnetic Resonance1 (1) (2020) 27–43. doi:10.5194/mr-1-27-2020.
[9] C. M. W. Tax, J. P. de Almeida Martins, F. Szczepankiewicz, C. F. Westin, M. Chamberland, D. Topgaard, D. K. Jones, From physical chemistry to human brain biology: unconstrained inversion of 5-dimensional diffusion-T2 correlation data, in: ISMRM, 2018, p. 1101.
[10] J. de Almeida Martins, C. M. W. Tax, A. Reymbaut, F. Szczepankiewicz,M. Chamberland, D. Jones, D. Topgaard, Computing and visualising intra-voxel orientation-specific relaxation–diffusion features in the human brain, Human Brain Mapping (2020).
[11] A. Abid, M. F. Balin, J. Zou, Concrete Autoencoders for Differen-tiable Feature Selection and Reconstruction, 36th International Con-ference on Machine Learning, ICML 2019 2019-June (2019) 694–711.arXiv:1901.09346.
[12] C. J. Maddison, A. Mnih, Y. W. Teh, The Concrete Distribution: AContinuous Relaxation of Discrete Random Variables, 5th InternationalConference on Learning Representations, ICLR 2017 - Conference TrackProceedings (nov 2016). arXiv:1611.00712.
[13] D. P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization,Proceedings of the 3rd International Conference on Learning Representations (ICLR) (dec 2014). arXiv:1412.6980.
[14] V. Golkov, A. Dosovitskiy, J. I. Sperl, M. I. Menzel, M. Czisch,P. S ̈amann, T. Brox, D. Cremers, Q-space deep learning: twelve-foldshorter and model-free diffusion mri scans, IEEE transactions on medi-cal imaging 35 (5) (2016) 1344–1351.
[15] F. Grussu, S. B. Blumberg, M. Battiston, L. S. Kakkar, H. Lin,A. Ianu ̧s, T. Schneider, S. Singh, R. Bourne, S. Punwani, D. Atkinson, C. A. M. Gandini Wheeler-Kingshott, E. Panagiotaki, T. Mertzanidou,D. C. Alexander, “select and retrieve via direct upsampling”network (sardu-net):a data-driven, model-free, deep learning approach for quantitative MRI protocol design, bioRxiv (2020). doi:10.1101/2020.05.26.116491.
[16] S. Eriksson, S. Lasiˇc, M. Nilsson, C.-F. Westin, D. Topgaard, NMR diffusion-encoding with axial symmetry and variable anisotropy: Distinguishing between prolate and oblate microscopic diffusion tensors with unknown orientation distribution, The Journal of Chemical Physics142 (10) (2015) 104201.