Operculo-insular epilepsy (OIE) is a rare and under-diagnosed pathology due to its heterogeneous presentation. Interestingly, no studies have looked at the structural connectome in OIE. In this study, we used a cutting-edge diffusion MRI processing pipeline to evaluate the connectivity pattern of OIE. The filtering-based COMMIT weight obtained from surface-enhanced tractography was used as a marker of ‘connectivity strength’. We found an increase in ‘connectivity strength’ within the epileptic network of OIE. Moreover, the pattern of connectivity was distinct from the one of TLE, potentially constituting a tool to help differentiate OIE from the closely related and challengingly distinguishable TLE.
1. Nguyen D.K., Nguyen D.B., Malak R., Bouthillier A. (2009), ''Insular cortex epilepsy: an overview'', Canadian Journal of Neurological Sciences, vol. 36, S2, pp. S58-62.
2. Nguyen D.K., Nguyen D.B., Malak R., Leroux J.M., Carmant L., Saint-Hilaire J.M., Giard N,., Cossette P., Bouthillier A. (2009), ''Revisiting the role of the insula in refractory partial epilepsy'', Epilepsia, vol. 50, no.3, pp. 510-520.
3. Obaid S., Zerouali Y., Nguyen D.K. (2017), ''Insular epilepsy: semiology and noninvasive investigations. Journal of Clinical Neurophysiology, vol. 34 (4), pp. 1537-1603.
4. Englot D., Konrad P.E., Morgan V.L. (2016), ''Regional and global connectivity disturbances in focal epilepsy, related neurocognivite sequelae, and potential mechanistic underpinning'', Epilepsia, vol. 57(10), pp. 1546-1557.
5. Dinkelacker V., Valabregue R., Thivard L., Lehéricy S., Baulac M., Samson S., Dupont S. (2015), ''Hippocampal-thalamic wiring in medial temporal lobe epilepsy: enhanced connectivity per hippocampal voxel'', Epilepsia, vol. 56 (8), pp. 1217-1226.
6. Bonilha L., Helpern J.A., Sainju R., Nesland T., Edwards J.C., Glazier S.S., Tabesh A. (2013), ''Presurgical connectome and postsurgical seizure control in temporal lobe epilepsy'', Neurology, vol. 81 (19), pp. 1704-1710.
7. St-Onge E., Daducci A., Girard G., Descoteaux M. (2018), ''Surface-enhanced tractography'', Neuroimage, vol.169, pp. 524-539.
8. Daducci A., Dal Palù A., Lemkaddem A., Thiran J.P. (2014), ''COMMIT: Convex optimization modeling for microstructure informed tractography'', IEEE Transactions on Medical Imaging, vol. 33 (1), pp. 246–257
9. Theaud G., Houde J-C, Boré A., Rheault F., Morency F., Descoteaux M. (2020), ''TractoFlow: A robust, efcient and reproducible diffusion MRI pipeline leveraging Nextow & Singularity'', Neuroimage, vol. 218.
10. Girard G., Whittingstall K., Derich, R., Descoteaux M. (2014), ''Towards quantitative connectivity analysis: reducing tractography biases'', Neuroimage, vol. 98, pp. 266–278.
11. Kim J.S., Singh V., Lee J.K., Lerch J., Ad-Dab’bagh Y., MacDonal, D., Lee J.M., Kim S.I., Evans A.C. (2005), ''Automated 3-d extraction and evaluation of the inner and outer cortical surfaces using a laplacian map and partial volume effect classification'', Neuroimage, vol. 27, pp. 210-221.
12. Dale A.M., Fischl B., Sereno M.I. (1999), ''Cortical surface-based analysis: I. segmtantion and surface reconstruction'', Neuroimage, vol. 9, pp.179-194.
13. Fan L., Li H., Zhuo J., Zhang Y., Wang J., Chen L., Yang Z., Chu C., Xie S., Laird A.R., Fox P. T., Eickhoff S.B., Yu C., Jiang T. (2016), ''The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture'', Cerebral cortex, vol. 26(8), pp. 3508–3526.
14. Desikan R. S., Ségonne F., Fischl B., Quinn B. T., Dickerson B. C., Blacker D., et al. (2006), ''An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. '', NeuroImage, vol. 31, pp. 968–980.