In this study, we used multi-excitation MR elastography (MRE) in conjunction with transversely isotropic NLI (TI-NLI) to estimate the anisotropic viscoelastic parameters of the human brain. We collected data on ten subjects and took averages of the parameters within individual regions of the brain. Through comparison of regions of interest, we found significant differences between the parameter estimate of gray matter and white matter and between individual white matter tracts. The results of this study indicate that multi-excitation MRE and TI-NLI can generate consistent anisotropic parameter estimates for WM that capture innate differences in individual tract structure.
[1] Tweten, D. J., Okamoto, R. J., Schmidt, J. L., Garbow, J. R., and Bayly, P. V., 2015, “Estimation of Material Parameters from Slow and Fast Shear Waves in an Incompressible, Transversely Isotropic Material,” J. Biomech., 48(15), pp. 4002–4009.
[2] MDJ McGarry, EEW Van Houten, CA Guertler, RJ Okamoto, DR Smith, D Sowinski, CL Johnson, PV Bayly, JB Weaver, KD Paulsen, “A Heterogeneous, Time Harmonic, Nearly Incompressible Transverse Isotropic Finite Element Brain Simulation Platform for MR Elastography,” Physics in Medicine and Biology, 2020
[3] MDJ McGarry, EEW Van Houten, D Sowinski, PV Bayly, DR Smith, CL Johnson, JB Weaver, KD Paulsen, “Model-Based Heterogeneous Transverse Isotropic MR Elastography Inversion for Brain Tissue with Aligned Fiber Tracts,” 28th Annual Meeting of the International Society for Magnetic Resonance in Medicine, August 8-13, 2020.
[4] Anderson, A. T., Van Houten, E. E., McGarry, M. D., Paulsen, K. D., Holtrop, J. L., Sutton, B. P., Georgiadis, J. G., and Johnson, C. L., 2016, “Observation of Direction-Dependent Mechanical Properties in the Human Brain with Multi-Excitation MR Elastography.”
[5] Smith, D. R., Guertler, C. A., Okamoto, R. J., Romano, A. J., Bayly, P. V., and Johnson, C. L., 2020, “Multi-Excitation Magnetic Resonance Elastography of the Brain: Wave Propagation in Anisotropic White Matter,” J. Biomech. Eng., 142(7).
[6] Tweten, D. J., Okamoto, R. J., and Bayly, P. V., 2017, “Requirements for Accurate Estimation of Anisotropic Material Parameters by Magnetic Resonance Elastography: A Computational Study,” Magn. Reson. Med., 78(6), pp. 2360–2372
.[7] CL Johnson, JL Holtrop, AT Anderson, BP Sutton, “Brain MR Elastography with Multiband Excitation and Nonlinear Motion-Induced Phase Error Correction,” 24th Annual Meeting of the International Society for Magnetic Resonance in Medicine, Singapore, May 7-13, 2016, p. 1951.
[8] Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., and Smith, S. M., 2012, FSL, Neuroimage, 62(2), pp. 782-790.
[9] Johnson, C. L., McGarry, M. D. J., Gharibans, A. A., Weaver, J. B., Paulsen, K. D., Wang, H., Olivero, W. C., Sutton, B. P., and Georgiadis, J. G., 2013, “Local Mechanical Properties of White Matter Structures in the Human Brain,” Neuroimage, 79, pp. 145–152.
[10] Schmidt, J. L., Tweten, D. J., Badachhape, A. A., Reiter, A. J., Okamoto, R. J., Garbow, J. R., and Bayly, P. V., 2018, “Measurement of Anisotropic Mechanical Properties in Porcine Brain White Matter Ex Vivo Using Magnetic Resonance Elastography,” J. Mech. Behav. Biomed. Mater., 79, pp. 30–37.
[11] Velardi, F., Fraternali, · F, and Angelillo, · M, 2006, “Anisotropic Constitutive Equations and Experimental Tensile Behavior of Brain Tissue,” Biomech Model Mechanbiol, 5, pp. 53–61.
[12] Romano, A., Scheel, M., Hirsch, S., Braun, J., and Sack, I., 2012, “In Vivo Waveguide Elastography of White Matter Tracts in the Human Brain,” Magn. Reson. Med., 68(5), pp. 1410–1422.