Free gradient waveforms for diffusion MRI offer new insights in the underlying microstructure compared the classical Stejskal-Tanner linear encoding. A drawback of this approach is the prolonged echo time and thus decreased SNR. Here we present an approach to shorten the echo time by employing spiral readouts instead of echo-planar imaging and using the ultra-strong gradients of the Connectom scanner. The feasibility of this approach is demonstrated in a biomimetic phantom.
LM is supported by a Wellcome Trust Strategic Award (104943/Z/14/Z). CMWT is supported by a Sir Henry Wellcome Fellowship (215944/Z/19/Z) and a Veni grant (17331) from the Dutch Research Council (NWO). This work was supported by a Wellcome Trust Investigator Award (096646/Z/11/Z), a Wellcome Trust Strategic Award (104943/Z/14/Z), and an EPSRC equipment grant (EP/M029778/1) to DKJ. MM is supported by Siemens Healthcare Limited grant.
1 O. Jelescu, J. Veraart, E. Fieremans and D. S. Novikov, "Degeneracy in model parameter estimation for multi-compartmental diffusion in neuronal tissue", NMR in Biomedicine, 29(1):33-47, 2016.
2 D. S. Novikov, J. Veraart, I. O. Jelescu and E. Fieremans, "Rotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion MRI", NeuroImage, 174:518-538, 2018.
3 Lasič, S., Szczepankiewicz, F., Eriksson, S., Nilsson, M., Topgaard, D. Microanisotropy imaging: quantification of microscopic diffusion anisotropy and orientational order parameter by diffusion MRI with magic-angle spinning of the q-vector. Frontiers in Physics, 2:11, 2014.
4 Eriksson, S., Lasič, S., Nilsson, M., Westin, C. F., Topgaard, D. 2015. NMR diffusion-encoding with axial symmetry and variable anisotropy: Distinguishing between prolate and oblate microscopic diffusion tensors with unknown orientation distribution. The Journal of chemical physics, 142(10):104201, 2015.
5 Afzali, M., Tax, C. M., Chatziantoniou, C., & Jones, D. K. Comparison of different tensor encoding combinations in microstructural parameter estimation. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019):1471-1474. IEEE, 2019.
6 Wilm, B. J., Barmet, C., Gross, S., Kasper, L., Vannesjo, S. J., Haeberlin, M., ... & Pruessmann, K. P. Single‐shot spiral imaging enabled by an expanded encoding model: D emonstration in diffusion MRI. Magnetic resonance in medicine, 77(1):83-91, 2017.
7 Wilm, B. J., Hennel, F., Roesler, M. B., Weiger, M., & Pruessmann, K. P. Minimizing the echo time in diffusion imaging using spiral readouts and a head gradient system. Magnetic Resonance in Medicine, 84(6):3117-3127, 2020.
8 Lee, Y., Wilm, B. J., Brunner, D. O., Gross, S., Schmid, T., Nagy, Z., & Pruessmann, K. P. On the signal‐to‐noise ratio benefit of spiral acquisition in diffusion MRI. Magnetic Resonance in Medicine, 2020 (online preprint).
9 Setsompop K, Kimmlingen R, Eberlein E, Witzel T, Cohen-Adad J, McNab JA, Keil B, Tisdall MD, Hoecht P, Dietz P, Cauley SF, Tountcheva V, Matschl V, Lenz VH, Heberlein K, Potthast A, Thein H, Van Horn J, Toga A, Schmitt F, Lehne D, Rosen BR, Wedeen V, and Wald LL. Pushing the limits of in vivo diffusion MRI for the human connectome project. NeuroImage, 80:220-233, 2013.
10 Jones, D. K., Alexander, D. C., Bowtell, R., Cercignani, M., Dell'Acqua, F., McHugh, D. J., ... & Tax, C. M. Microstructural imaging of the human brain with a ‘super-scanner’: 10 key advantages of ultra-strong gradients for diffusion MRI. NeuroImage, 182:8-38, 2013.
11 Sjölund, J., Szczepankiewicz, F., Nilsson, M., Topgaard, D., Westin, C. F., & Knutsson, H Constrained optimization of gradient waveforms for generalized diffusion encoding. Journal of magnetic resonance, 261:157-168, 2013.
12 Szczepankiewicz F, Westin CF, Nilsson M. Maxwell-compensated design of asymmetric gradient waveforms for tensor-valued diffusion encoding. Magn Reson Med. 82(4):1424-1437, 2013.
13 Hubbard, P. L., Zhou, F. L., Eichhorn, S. J., & Parker, G. J. Biomimetic phantom for the validation of diffusion magnetic resonance imaging. Magnetic resonance in medicine, 73(1):299-305, 2015.
14 Markus Nilsson, Filip Szczepankiewicz, Björn Lampinen, André Ahlgren, João P. de Almeida Martins, Samo Lasic, Carl-Fredrik Westin, and Daniel Topgaard. An open-source framework for analysis of multidimensional diffusion MRI data implemented in MATLAB. Proc. Intl. Soc. Mag. Reson. Med. (26), Paris, France, 2018
15 Hutter, J., Slator, P. J., Christiaens, D., Teixeira, R. P. A., Roberts, T., Jackson, L., ... & Hajnal, J. V. Integrated and efficient diffusion-relaxometry using ZEBRA. Scientific reports, 8(1):1-13, 2018.