We present results from round 2 of IronTract, the first challenge to evaluate the accuracy of tractography using i) tracer injections and diffusion MRI from the same macaque brains, and ii) DSI and HCP two-shell diffusion acquisition schemes. In round 1, only two teams achieved similarly high performance between the two different injection sites that we used for training and validation. Here we investigate the extent to which this was due to the pre- and post-processing used by those teams. We show that, when other teams use the same pre- and post-processing, their accuracy and robustness can improve as well.
1. Lehman JF, Greenberg BD, McIntyre CC, Rasmussen SA, Haber SN. Rules ventral prefrontal cortical axons use to reach their targets: implications for diffusion tensor imaging tractography and deep brain stimulation for psychiatric illness. Journal of neuroscience. 2011;31:10392–10402.
2. Safadi Z, Grisot G, Jbabdi S, Behrens TE, Heilbronner SR, McLaughlin NCR, Mandeville J, Versace A, Phillips ML, Lehman JF, Yendiki A, Haber SN. Functional Segmentation of the Anterior Limb of the Internal Capsule: Linking White Matter Abnormalities to Specific Connections. J Neurosci. 2018 Feb 21;38(8):2106-2117.
3. Maffei, C., G. Girard, K. G. Schilling, N. Adluru, D. B. Aydogan, A. Hamamci, F.-C. Yeh, M. Mancini, Y. Wu, A. Sarica, A. Teillac, S. H. Baete, D. Karimi, Y.-C. Lin, F. Boada, N. Richard, B. Hiba, A. Quattrone, Y. Hong, D. Shen, P.-T. Yap, T. Boshkovski, J. S. W. Campbell, N. Stikov, G. B. Pike, B. B. Bendlin, A. L. Alexander, V. Prabhakaran, A. Anderson, B. A. Landman, E. J. Z. Canales-Rodríguez, M. Barakovic, J. Rafael-Patino, T. Yu, G. Rensonnet, S. Schiavi, A. Daducci, M. Pizzolato, E. Fischi-Gomez, J.-P. Thiran, G. Dai, G. Grisot, N. Lazovski, A. Puente, M. Rowe, I. Sanchez, V. Prchkovska, R. Jones, J. Lehman, S. Haber and A. Yendiki (2020). The IronTract challenge: Validation and optimal tractography methods for the HCP diffusion acquisition scheme. ISMRM (oral presentation).
4. Veraart, J.; Novikov, D.S.; Christiaens, D.; Ades-aron, B.; Sijbers, J. & Fieremans, E. Denoising of diffusion MRI using random matrix theory. NeuroImage, 2016, 142, 394-406, doi: 10.1016/j.neuroimage.2016.08.016
5. Tournier JD., Calamante, F, Connelly, A. MRtrix: Diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22, 53–66 (2012). DOI 10.1002/ima.22005.
6. Kellner, E; Dhital, B; Kiselev, V.G & Reisert, M. Gibbs-ringing artifact removal based on local subvoxel-shifts. Magnetic Resonance in Medicine, 2016, 76, 1574–1581.
7. Jesper L. R. Andersson and Stamatios N. Sotiropoulos. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage, 125:1063-1078, 2016.
8. Andersson JL, Skare S, Ashburner J (2003) How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20: 870–888
9. Feng L, Jeon T, Yu Q, Ouyang M, Peng Q, Mishra V, Pletikos M, Sestan N, Miller MI, Mori S, Hsiao S, Liu S, Huang H, 2017. Population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space. Brain Struct Funct. 222(9): 4131-4147.
10. Canales-Rodríguez EJ, Daducci A, Sotiropoulos S, Caruyer E, Aja-Fernández S, Radua J, Yurramendi Mendizabal JM, Iturria-Medina Y, Melie- García L, Alemán-Gómez Y, Thiran JP, Sarró S, Pomarol-Clotet E, Salvador R. Spherical Deconvolution of Multichannel Diffusion MRI Data with Non-Gaussian Noise Models and Spatial Regularization. PLoS One. 2015;10(10):e0138910.
11. Tournier JD, Calamante F, Connelly A. Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained superresolved spherical deconvolution. Neuroimage. 2007;35(4):1459-1472.
12. Jeurissen B, Tournier JD, Dhollander T, Connelly A, Sijbers J. Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion mri data. NeuroImage. 2014;103:411-426, 2014.
13. Dhollander T, Mito R, Raffelt D, Connelly A., \u201cImproved white matter response function estimation for 3-tissue constrained spherical deconvolution\u201d, ISMRM 2019, Montreal.
14. Tran G and Yonggang Shi. "Fiber orientation and compartment parameter estimation from multi-shell diffusion imaging." IEEE transactions on medical imaging. 2015;34(11):2320-2332.
15. Wu, Y. et al. Asymmetry spectrum imaging for baby diffusion tractography. In International Conference on Information Processing in Medical Imaging. 319–331 (Springer, 2019).
16. Yeh FC, Wedeen VJ, Tseng WY. Generalized q-sampling imaging. IEEE TMI. 2010;29(9)5.
17. Guo, F., Leemans, A., Viergever, M. A., Dell’Acqua, F., & De Luca, A. (2020).Generalized Richardson-Lucy (GRL) for analyzing multi-shell diffusion MRI data.NeuroImage, 218(April), 116948. https://doi.org/10.1016/j.neuroimag