Liver cancer is a leading cause of cancer-related death, and new quantitative MRI (qMRI) techniques are needed to inform treatment selection and monitor disease progression. We propose a new technique, Diffusion-Relaxation Hepatic Imaging via Generalisable Assessment of DiffusiOn Simulations (DR-HIGADOS), with the aim of improving sensitivity and biological specificity of liver qMRI. DR-HIGADOS is a diffusion-relaxation method that uses information from Monte Carlo simulations to map parameters of an extended intra-voxel incoherent motion model to microstructural indices (e.g. cell size, cellularity). DR-HIGADOS is demonstrated on multi-vendor clinical data, and its histological correlates are investigated on preclinical high-field scans.
[1] W. A. Curtis, T. J. Fraum, H. An, Y. Chen, A. S. Shetty, and K. J. Fowler, “Quantitative MRI of Diffuse Liver Disease: Current Applications and Future Directions”, Radiology, vol. 290, no. 1, pp. 23–30, Jan. 2019, doi: 10.1148/radiol.2018172765.
[2] J. S. Witt, S. A. Rosenberg, and M. F. Bassetti, “MRI-guided adaptive radiotherapy for liver tumours: visualising the future”, Lancet Oncol., vol. 21, no. 2, pp. e74–e82, Feb. 2020, doi: 10.1016/S1470-2045(20)30034-6.
[3] A. Forner, M. Reig, and J. Bruix, “Hepatocellular carcinoma”, Lancet, vol. 391, no. 10127, pp. 1301–1314, Mar. 2018, doi: 10.1016/S0140-6736(18)30010-2.
[4] L. Li and H. Wang, “Heterogeneity of liver cancer and personalized therapy”, Cancer Lett., vol. 379, no. 2, pp. 191–197, Sep. 2016, doi: 10.1016/j.canlet.2015.07.018.
[5] E. B. Tapper and A. S. F. Lok, “Use of Liver Imaging and Biopsy in Clinical Practice”, N. Engl. J. Med., vol. 377, no. 8, pp. 756–768, Aug. 2017, doi: 10.1056/NEJMra1610570.
[6] N. P. Jerome et al., “Extended T2-IVIM model for correction of TE dependence of pseudo-diffusion volume fraction in clinical diffusion-weighted magnetic resonance imaging”, Phys. Med. Biol., vol. 61, no. 24, pp. N667–N680, Dec. 2016, doi: 10.1088/1361-6560/61/24/N667.
[7] Y. Liu et al., “Comparative Study of Monoexponential, Intravoxel Incoherent Motion, Kurtosis, and IVIM-Kurtosis Models for the Diagnosis and Aggressiveness Assessment of Prostate Cancer”, Front. Oncol., vol. 10, Sep. 2020, doi: 10.3389/fonc.2020.01763.
[8] D. Le Bihan, E. Breton, D. Lallemand, P. Grenier, E. Cabanis, and M. Laval-Jeantet, “MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders”, Radiology, vol. 161, no. 2, pp. 401–407, Nov. 1986, doi: 10.1148/radiology.161.2.3763909.
[9] F. Grussu, M. Battiston, M. Palombo, T. Schneider, C. A. M. Gandini Wheeler-Kingshott, and D. C. Alexander, “Deep learning model fitting for diffusion-relaxometry: a comparative study”, Proc of Computational Diffusion MRI 2020 (in production).
[10] S. Barbieri, O. J. Gurney‐Champion, R. Klaassen, and H. C. Thoeny, “Deep learning how to fit an intravoxel incoherent motion model to diffusion‐weighted MRI”, Magn. Reson. Med., vol. 83, no. 1, pp. 312–321, Jan. 2020, doi: 10.1002/mrm.27910.
[11] E. Fieremans, J. H. Jensen, and J. A. Helpern, “White matter characterization with diffusional kurtosis imaging”, Neuroimage, vol. 58, no. 1, pp. 177–188, Sep. 2011, doi: 10.1016/j.neuroimage.2011.06.006.
[12] M. Palombo et al., “New paradigm to assess brain cell morphology by diffusion-weighted MR spectroscopy in vivo”, Proc. Natl. Acad. Sci., vol. 113, no. 24, pp. 6671–6676, Jun. 2016, doi: 10.1073/pnas.1504327113.
[13] J. Rafael-Patino, D. Romascano, A. Ramirez-Manzanares, E. J. Canales-Rodríguez, G. Girard, and J.-P. Thiran, “Robust Monte-Carlo Simulations in Diffusion-MRI: Effect of the Substrate Complexity and Parameter Choice on the Reproducibility of Results”, Front. Neuroinform., vol. 14, Mar. 2020, doi: 10.3389/fninf.2020.00008.
[14] J. Veraart, D. S. Novikov, D. Christiaens, B. Ades-aron, J. Sijbers, and E. Fieremans, “Denoising of diffusion MRI using random matrix theory”, Neuroimage, vol. 142, pp. 394–406, Nov. 2016, doi: 10.1016/j.neuroimage.2016.08.016.
[15] C. G. Koay and P. J. Basser, “Analytically exact correction scheme for signal extraction from noisy magnitude MR signals”, J. Magn. Reson., vol. 179, no. 2, pp. 317–322, Apr. 2006, doi: 10.1016/j.jmr.2006.01.016.
[16] E. Kellner, B. Dhital, V. G. Kiselev, and M. Reisert, “Gibbs-ringing artifact removal based on local subvoxel-shifts”, Magn. Reson. Med., vol. 76, no. 5, pp. 1574–1581, Nov. 2016, doi: 10.1002/mrm.26054.
[17] F. Grussu et al., “Neurite dispersion: A new marker of multiple sclerosis spinal cord pathology?”, Ann. Clin. Transl. Neurol., 2017, doi: 10.1002/acn3.445.
[18] N. Terayama, T. Terada, and Y. Nakanuma, “Histologic growth patterns of metastatic carcinomas of the liver”, Jpn. J. Clin. Oncol., 1996, doi: 10.1093/oxfordjournals.jjco.a023174.
[19] N. Kruepunga, T. B. M. Hakvoort, J. P. J. M. Hikspoors, S. E. Köhler, and W. H. Lamers, “Anatomy of rodent and human livers: What are the differences?”, Biochim. Biophys. Acta - Mol. Basis Dis., vol. 1865, no. 5, pp. 869–878, May 2019, doi: 10.1016/j.bbadis.2018.05.019.
[20] J. Veraart et al., “Noninvasive quantification of axon radii using diffusion MRI”, Elife, vol. 9, Feb. 2020, doi: 10.7554/eLife.49855.
[21] H. Imamura, S. Kawasaki, J. Shiga, Y. Bandai, K. Sanjo, and Y. Idezuki, “Quantitative evaluation of parenchymal liver cell volume and total hepatocyte number in cirrhotic patients”, Hepatology, vol. 14, no. 3, pp. 448–453, Sep. 1991, doi: 10.1002/hep.1840140308.
[22] N. C. Martin, C. T. McCullough, P. G. Bush, L. Sharp, A. C. Hall, and D. J. Harrison, “Functional analysis of mouse hepatocytes differing in DNA content: Volume, receptor expression, and effect of IFN”, J. Cell. Physiol., vol. 191, no. 2, pp. 138–144, May 2002, doi: 10.1002/jcp.10057.