Soma and Neurite Density Imaging (SANDI) was recently proposed to disentangle cylindrical and spherical geometries, attributed to neurite and soma compartments. In this work, using: (i) ultra-strong gradients; (ii) a combination of linear, planar, and spherical b-tensor encodings; and (iii) analysing the signal in the frequency domain, three main challenges were identified; First, the Rician noise floor biases estimation of soma properties. Second there is an empirical lower bound on the spherical signal fraction and pore-size. Third, if there is sensitivity to the transverse intra-cellular diffusivity in cylindrical structures, estimation of spherical pore-size is challenging.
1- Mitra, P.P., Sen, P.N., Schwartz, L.M., Le Doussal, P. Diffusion propagator as a probe of the structure of porous media. Physical review letters 1992;68(24):3555.
2- Wiegell, M.R., Larsson, H.B., Wedeen, V.J. Fiber crossing in human brain depicted with diffusion tensor MR imaging. Radiology2000;217(3):897–903.
3- Stanisz, G., Wright, G., Henkelman, R., Szafer, A. An analytical model of restricted diffusion in bovine optic nerve. Magnetic Resonance in Medicine 1997;37(1):103–111.
4- Zhang, H., Schneider, T., Wheeler-Kingshott, C., Alexander, D. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 2012;61(4):1000–1016.
5- Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y., Basser, P. Axcaliber: a method for measuring axon diameter distribution from diffusion MRI. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 2008;59(6):1347–1354.
6- Afzali, M., Aja-Fern ́andez, S., Jones, D.K. Direction-averaged diffusion-weighted MRI signal using different axisymmetric b-tensor encoding schemes. Magnetic Resonance in Medicine 2020a;
7- Afzali, M., Pieciak, T., Newman, S., Garifallidis, E., ̈Ozarslan, E., Cheng, H., Jones, D.K. The sensitivity of diffusion MRI to microstructural properties and experimental factors. Journal of Neuroscience Methods 2020b; 108951.
8- McKinnon, E.T., Jensen, J.H., Glenn, G.R., Helpern, J.A. Dependence on b-value of the direction-averaged diffusion-weighted imaging signal in brain. Magnetic resonance imaging 2017;36:121–127.
9- Veraart, J., Fieremans, E., Novikov, D.S. On the scaling behavior of water diffusion in human brain white matter. NeuroImage 2019;185:379–387.
10- Palombo, M., Shemesh, N., Ianus, A., Alexander, D., Zhang, H.. Abundance of cell bodies can explain the stick model's failure in grey matter at high b value. ISMRM (International Society for Magnetic Resonance in Medicine); 2018a.
11- Henriques, R.N., Jespersen, S.N., Shemesh, N. Microscopic anisotropy misestimation in spherical-mean single diffusion encoding MRI. Magnetic resonance in medicine 2019;81(5):3245–3261.
12- Jespersen, S.N., Olesen, J.L., Ianu ̧s, A., Shemesh, N. Effects of nongaussian diffusion on isotropic diffusion measurements: an ex-vivo microimaging and simulation study. Journal of Magnetic Resonance 2019;300:84–94.
13- Palombo, M., Ianus, A., Guerreri, M., Nunes, D., Alexander, D.C., Shemesh, N., Zhang, H.. SANDI: a compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI. NeuroImage 2020;:116835.
14- Jelescu, I., Veraart, J., Fieremans, E., Novikov, D. Degeneracy in model parameter estimation for multi-compartmental diffusion in neuronal tissue. NMR in Biomedicine 2016;29(1):33–47.
15- Novikov, D.S., Kiselev, V.G., Jespersen, S.N. On modeling. Magnetic resonance in medicine 2018b;79(6):3172–3193.
16- Jones, D.K., Kn ̈osche, T.R., Turner, R.. White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage 2013;73:239–254.
17- Lampinen, B., Szczepankiewicz, F., M ̊artensson, J., van Westen, D., Sundgren, P.C., Nilsson, M. Neurite density imaging versus imaging of microscopic anisotropy in diffusion MRI: a model comparison using spherical tensor encoding. Neuroimage 2017;147:517–531.
18- Lampinen, B., Szczepankiewicz, F., M ̊artensson, J., van Westen, D., Hansson, O., Westin, C.F., Nilsson, M.. Towards unconstrained compartment modeling in white matter using diffusion-relaxation MRI with tensor-valued diffusion encoding. Magnetic Resonance in Medicine 2020;84(3):1605–1623.
19- Lampinen, B., Szczepankiewicz, F., Nov ́en, M., van Westen, D., Hansson, O., Englund, E., M ̊artensson, J., Westin, C.F., Nilsson, M.. Searching for the neurite density with diffusion MRI: challenges for biophysical modeling. Human brain mapping 2019;40(8):2529–2545.
20- Westin, C.F., Knutsson, H., Pasternak, O., Szczepankiewicz, F., ̈Ozarslan, E., van Westen, D., Mattisson, C., Bogren, M., O’donnell, L.J., Kubicki, M., et al. Q-space trajectory imaging for multidimensional diffusion MRI of the human brain. Neuroimage 2016;135:345–362.
21- Reisert, M., Kiselev, V.G., Dhital, B. A unique analytical solution of the white matter standard model using linear and planar encodings. Magnetic resonance in medicine 2019;81(6):3819–3825.
22- Coelho, S., Pozo, J.M., Jespersen, S.N., Jones, D.K., Frangi, A.F. Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding. Magnetic Resonance in Medicine 2019;82(1):395–410.
23- Fieremans, E., Veraart, J., Benjamin, A., Filip, S., Nilsson, M., Novikov, D. Effect of combining linear with spherical tensor encoding on estimating brain microstructural parameters. Proceedings of the ISMRM, Paris 2018.
24- Gyori, N., Clark, C., Dragonu, I., Alexander, D., Kaden, E. In-vivo neural soma imaging using b-tensor encoding and deep learning. In: Proceedings of the 27th Annual Meeting of ISMRM, Montreal, Canada. 2019.
25- Murday, J., Cotts, R.M. Self-diffusion coefficient of liquid lithium.The Journal of Chemical Physics 1968;48(11):4938–4945.
26- Eriksson, S., Lasiˇc, S., Nilsson, M., Westin, C.F., Topgaard, D. NMR diffusion-encoding with axial symmetry and variable anisotropy: Distinguishing between prolate and oblate microscopic diffusion tensors with unknown orientation distribution. The Journal of chemical physics 2015;142(10):104201.
27- Jespersen, S.N., Lundell, H., Sønderby, C.K., Dyrby, T.B. Orientationally invariant metrics of apparent compartment eccentricity from double pulsed field gradient diffusion experiments. NMR in Biomedicine 2013;26(12):1647–1662.
28- Lasiˇc, S., Szczepankiewicz, F., Eriksson, S., Nilsson, M., Topgaard, D. Microanisotropy imaging: quantification of microscopic diffusion anisotropy and orientational order parameter by diffusion MRI with magic-angle spinning of the q-vector. Frontiers in Physics 2014;2:11.
29- Callaghan, P., Jolley, K., Lelievre, J. Diffusion of water in the endosperm tissue of wheat grains as studied by pulsed field gradient nuclear magnetic resonance. Biophysical journal 1979;28(1):133–141.
30- Stepiˇsnik, J.. Time-dependent self-diffusion by NMR spin-echo.Physica B: Condensed Matter 1993;183(4):343–350.
31- Lundell, H., Nilsson, M., Dyrby, T., Parker, G., Cristinacce, P.H., Zhou, F.L., Topgaard, D., Lasiˇc, S. Multidimensional diffusion MRI with spectrally modulated gradients reveals unprecedented microstructural detail. Scientific reports 2019;9(1):9026.
32- Knutsson, H.. Towards optimal sampling in diffusion MRI. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer; 2018. p. 3–18.
33- Kellner, E., Dhital, B., Kiselev, V.G., Reisert, M.. Gibbs-ringing artifact removal based on local subvoxel-shifts. Magnetic resonance in medicine 2016;76(5):1574–1581.
34- Andersson, J.L., Sotiropoulos, S.N. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 2016;125:1063–1078.
35- Rudrapatna, U., Parker, G.D., Jamie, R., Jones, D.K. A comparative study of gradient nonlinearity correction strategies for processing diffusion data obtained with ultra-strong gradient MRI scanners. Magnetic Resonance in Medicine 2020.
36- Beul, S.F., Hilgetag, C.C. Neuron density fundamentally relates to architecture and connectivity of the primate cerebral cortex. NeuroImage 2019;189:777–792.
37- Collins, C.E., Airey, D.C., Young, N.A., Leitch, D.B., Kaas, J.H. Neuron densities vary across and within cortical areas in primates. Proceedings of the National Academy of Sciences 2010;107(36):15927–15932.
Fig . 5 (a) The effect of sphere size and signal fraction on exponent α (similar to Fig. 2 in 10). ($$$f_{\rm{sphere}} = 0.01:0.01:0.1,\,0.2:0.1:0.5$$$, $$$f_{\rm{ball}} = f_{\rm{stick}} = (1 - f_{\rm{sphere}})/2$$$, $$$D_{\rm{in}}^{\mid\mid} = 2 \; \mu m^2/ms$$$, $$$D_{\rm{ball}} = 2 \; \mu m^2/ms$$$, $$$R_{\rm{sphere}} = 1:1:10 \; \mu m$$$, δ = 29.65 ms, and Δ = 37.05 ms). (b) Estimated FA, parameter β and α of the power-law fit ($$$S/S_0 = \beta b^{-\alpha}$$$) from axial, coronal, and sagittal views of the brain image.