Diffusion-weighted MRI (dMRI) is a formidable technique for non-invasively characterizing brain microstructure. Biophysical modelling is often necessary to gain specificity to cellular structure. However, designing sensible biophysical models and appropriate dMRI acquisitions is challenging, especially for gray matter (GM), as little is known about typical values of relevant features of brain-cell morphology contributing to dMRI signal. This study addressed this unmet need: we analysed ~3,500 cells from mouse, rat, monkey and human brains to determine statistical distributions of 13 morphological features relevant to GM microstructure modelling. Illustrative examples demonstrate how this study can inform biophysical modelling.
1. D. C. Alexander, T. B. Dyrby, M. Nilsson, H. Zhang, Imaging brain microstructure with diffusion MRI: practicality and applications. Nmr Biomed 32, e3841 (2019).
2. I. O. Jelescu, M. Palombo, F. Bagnato, K. G. Schilling, Challenges for biophysical modeling of microstructure. J Neurosci Methods 344, 108861 (2020).
3. D. S. Novikov, E. Fieremans, S. N. Jespersen, V. G. Kiselev, Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation. Nmr Biomed 32, e3998 (2019).
4. H. H. Lee et al., Along-axon diameter variation and axonal orientation dispersion revealed with 3D electron microscopy: implications for quantifying brain white matter microstructure with histology and diffusion MRI. Brain Struct Funct 224, 1469-1488 (2019).
5. M. Andersson et al., Axon morphology is modulated by the local environment and impacts the non-invasive investigation of its structure-function relationship. bioRxiv preprint doi: https://doi.org/10.1101/2020.05.29.118737 (2020).
6. R. Callaghan, D. C. Alexander, M. Palombo, H. Zhang, ConFiG: Contextual Fibre Growth to generate realistic axonal packing for diffusion MRI simulation. Neuroimage 220, 117107 (2020).
7. M. Kleinnijenhuis, E. Johnson, J. Mollink, S. Jbabdi, K. L. Miller, A semi-automated approach to dense segmentation of 3D white matter electron microscopy. bioRxiv preprint doi: https://doi.org/10.1101/2020.03.19.979393 (2020).
8. M. Palombo et al., New paradigm to assess brain cell morphology by diffusion-weighted MR spectroscopy in vivo. Proc Natl Acad Sci U S A 113, 6671-6676 (2016).
9. M. Palombo et al., SANDI: A compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI. Neuroimage 215, 116835 (2020).
10. A. Ianus, D. C. Alexander, H. Zhang, M. Palombo, Mapping complex cell morphology in the grey matter with double diffusion encoding MRI: a simulation study. arXiv:2009.11778 (2020).
11. M. B. Hansen, S. N. Jespersen, L. A. Leigland, C. D. Kroenke, Using diffusion anisotropy to characterize neuronal morphology in gray matter: the orientation distribution of axons and dendrites in the NeuroMorpho.org database. Front Integr Neurosci 7, 31 (2013).
12. J. L. Olesen, S. N. Jespersen (2020) Stick power law scaling in neurons withstands realistic curvature and branching. in International Society for Magnetic Resonance in Medicine Annual Meeting.
13. M. Nilsson, J. Latt, F. Stahlberg, D. van Westen, H. Hagslatt, The importance of axonal undulation in diffusion MR measurements: a Monte Carlo simulation study. Nmr Biomed 25, 795-805 (2012).
14. J. Brabec, S. Lasic, M. Nilsson, Time-dependent diffusion in undulating thin fibers: Impact on axon diameter estimation. Nmr Biomed 33, e4187 (2020).
15. D. S. Novikov, V. G. Kiselev, Surface-to-volume ratio with oscillating gradients. J Magn Reson 210, 141-145 (2011).
16. H. H. Lee, A. Papaioannou, S. L. Kim, D. S. Novikov, E. Fieremans, A time-dependent diffusion MRI signature of axon caliber variations and beading. Commun Biol 3, 354 (2020).
17. D. S. Novikov, J. H. Jensen, J. A. Helpern, E. Fieremans, Revealing mesoscopic structural universality with diffusion. P Natl Acad Sci USA 111, 5088-5093 (2014).
18. M. Palombo, C. Ligneul, J. Valette, Modeling diffusion of intracellular metabolites in the mouse brain up to very high diffusion-weighting: Diffusion in long fibers (almost) accounts for non-monoexponential attenuation. Magnet Reson Med 77, 343-350 (2017).
19. H. Cuntz, F. Forstner, A. Borst, M. Hausser, One Rule to Grow Them All: A General Theory of Neuronal Branching and Its Practical Application. Plos Comput Biol 6 (2010).
20. https://www.blender.org.
21. G. Peyre (2020) Toolbox Graph (https://www.mathworks.com/matlabcentral/fileexchange/5355-toolbox-graph),. (MATLAB Central File Exchange. Retrieved December 15, 2020.).
22. M. Palombo, D. C. Alexander, H. Zhang, A generative model of realistic brain cells with application to numerical simulation of the diffusion-weighted MR signal. Neuroimage 188, 391-402 (2019).
23. J. J. Garcia-Cantero, J. P. Brito, S. Mata, S. Bayona, L. Pastor, NeuroTessMesh: A Tool for the Generation and Visualization of Neuron Meshes and Adaptive On-the-Fly Refinement. Front Neuroinform 11, 38 (2017).
24. I. Velasco et al., Neuronize v2: Bridging the Gap Between Existing Proprietary Tools to Optimize Neuroscientific Workflows. Front Neuroanat 14, 585793 (2020).
25. P. T. Callaghan, Principles of nuclear magnetic resonance microscopy (Clarendon Press ; Oxford University Press, 1991).
26. E. Ozarslan, C. Yolcu, M. Herberthson, H. Knutsson, C. F. Westin, Influence of the size and curvedness of neural projections on the orientationally averaged diffusion MR signal. Front Phys 6(2018).
27. M. Nilsson, S. Lasic, I. Drobnjak, D. Topgaard, C. F. Westin, Resolution limit of cylinder diameter estimation by diffusion MRI: The impact of gradient waveform and orientation dispersion. Nmr Biomed10.1002/nbm.3711 (2017).