We propose a new method to solve the inverse problem of relating the diffusion MRI signal with cytoarchitectural characteristics in brain gray matter. Specifically, our method has quantitative sensitivity to soma density and volume. Our solution is twofold. First, we propose a new forward model that relates summary statistics of the dMRI signal with tissue parameters, relying on six b-shells only. We then apply a likelihood-free inference based algorithm to invert the proposed model, which not only estimates the tissue parameters that best describe the acquired diffusion signal, but also a full posterior distribution over the parameter space.
We thank Dmitry Novikov for stimulating conversations and his implementation of LEMONADE.
This work was supported by the ERC-StG NeuroLang grant number 757672 and the ANR/NSF NeuroRef grants.
1. Novikov, D.S., Veraart, J., Jelescu, I.O., Fieremans, E.: Rotationally-invariant map-ping of scalar and orientational metrics of neuronal microstructure with diffusion MRI.NeuroImage174, 518–538 (Jul 2018)
2. Palombo, M., Ianus, A., Guerreri, M., Nunes, D., Alexander, D.C., Shemesh, N., Zhang,H.: SANDI: A compartment-based model for non-invasive apparent soma and neuriteimaging by diffusion MRI. NeuroImage215, 116835 (2020)
3. Veraart, J., Nunes, D., Rudrapatna, U., Fieremans, E., Jones, D.K., Novikov, D.S.,Shemesh, N.: Noninvasive quantification of axon radii using diffusion MRI. eLife9(Feb 2020)
4. Balinov, B., Jönsson, Linse, P., Söderman, O.: The NMR Self-Diffusion Method Ap-plied to Restricted Diffusion. Simulation of Echo Attenuation form Molecules in Spheresand between Planes (1993)
5. Mitra, P.P., Latour, L.L., Kleinberg, R.L., Sotak, C.H.: Pulsed-field-gradient NMRmeasurements of restricted diffusion and the return-to-origin probability. Journal ofMagnetic Resonance114, 47–58 (1995)
6. Menon, V., Gallardo, G., Pinsk, M.A., Nguyen, V.D., Li, J.R., Cai, W., Wassermann,D.: Microstructural organization of human insula is linked to its macrofunctional cir-cuitry and predicts cognitive control. elife9, e53470 (2020)
7. Cranmer, K., Brehmer, J., Louppe, G.: The frontier of simulation-based inference.Proceedings of the National Academy of Sciences117(48), 30055–30062 (2020)
8. Greenberg, D., Nonnenmacher, M., Macke, J.: Automatic posterior transformationfor likelihood-free inference. In: Proceedings of the 36th International Conference onMachine Learning, vol. 97, pp. 2404–2414, PMLR (2019)
9. Fick, R.H.J., Wassermann, D., Deriche, R.: The Dmipy Toolbox: Diffusion MRI Multi-Compartment Modeling and Microstructure Recovery Made Easy. Frontiers in Neuroin-formatics13(Oct 2019)
10. Setsompop, K., Kimmlingen, R., Eberlein, E., Witzel, T., Cohen-Adad, J., McNab, J.,Keil, B., Tisdall, M., Hoecht, P., Dietz, P., Cauley, S., Tountcheva, V., Matschl, V.,Lenz, V., Heberlein, K., Potthast, A., Thein, H., Horn, J.V., Toga, A., Schmitt, F.,Lehne, D., Rosen, B., Wedeen, V., Wald, L.: Pushing the limits of in vivo diffusionMRI for the Human Connectome Project. NeuroImage80, 220 – 233 (2013)
11. Fick, R.H., Wassermann, D., Caruyer, E., Deriche, R.: MAPL: Tissue microstructureestimation using Laplacian-regularized MAP-MRI and its application to HCP data.NeuroImage134, 365–385 (Jul 2016)
12. Allman, J.M., Tetreault, N.A., Hakeem, A.Y., Manaye, K.F., Semendeferi, K., Erwin,J.M., Park, S., Goubert, V., Hof, P.R.: The von Economo neurons in frontoinsular andanterior cingulate cortex in great apes and humans. Brain Structure and Function214,495–517 (Jun 2010)
13. Amunts, K., Schleicher, A., Bürgel, U., Mohlberg, H., Uylings, H.B., Zilles, K.: Broca’sregion revisited: Cytoarchitecture and intersubject variability. Journal of ComparativeNeurology412(2), 319–341 (1999)
14. Geyer, S., Schleicher, A., Zilles, K.: Areas 3a, 3b, and 1 of Human Primary Somatosen-sory Cortex. NeuroImage10(1), 63–83 (Jul 1999), ISSN 10538119