We introduced a novel imaging approach SE-EPTI to address the T2’-contamination in SE-EPI for higher specificity of BOLD fMRI. EPTI resolves multi-contrast distortion/blurring-free images to simultaneously obtain: a pure SE image with minimal T2’-contamination, multiple GE images with various T2’-weightings, and conventional SE-EPI images with different levels of T2’-contamination. We demonstrated at 7T that the pure SE can significantly reduce the draining-vein-effect, and by using shorter ETLs, less T2’-contamination was introduced. A new echo-train-shifting method is also proposed for SE-EPTI to offer flexibility of achieving shorter TEs, allowing us to examine the TE dependence of the signal contribution.
1. Koopmans, P. J., & Yacoub, E. (2019). Strategies and prospects for cortical depth dependent T2 and T2* weighted BOLD fMRI studies. NeuroImage, 197, 668–676. https://doi.org/10.1016/j.neuroimage.2019.03.024
2. Norris, D. G. (2012). Spin-echo fMRI: The poor relation? NeuroImage, 62(2), 1109–1115. https://doi.org/10.1016/j.neuroimage.2012.01.003
3. Goense, J. B. M., & Logothetis, N. K. (2006). Laminar specificity in monkey V1 using high-resolution SE-fMRI. Magnetic Resonance Imaging, 24(4), 381–392. https://doi.org/10.1016/j.mri.2005.12.032
4. Birn R, Bandettini PA. The effect of T2’ changes on spin-echo EPI-derived brain activation maps. Proc Intl Soc Mag Reson Med. 2002;10:1324.
5. Feinberg, D., Harel, N., Ramanna, S., Ugurbil, K., & Yacoub, E. (2008). Sub-millimeter single-shot 3D GRASE with inner volume selection for T2-weighted fMRI applications at 7 Tesla. Proc Intl Soc Mag Reson Med, 16, 2373.
6. Setsompop, K., Feinberg, D. A., & Polimeni, J. R. (2016). Rapid brain MRI acquisition techniques at ultra-high fields. NMR in Biomedicine, 29(9), 1198–1221. https://doi.org/10.1002/nbm.3478
7. Kemper, V. G., De Martino, F., Vu, A. T., Poser, B. A., Feinberg, D. A., Goebel, R., & Yacoub, E. (2015). Sub-millimeter T2 weighted fMRI at 7 T: comparison of 3D-GRASE and 2D SE-EPI. Frontiers in Neuroscience, 9, 163. https://doi.org/10.3389/fnins.2015.00163
8. Huber, L., Uludağ, K., & Möller, H. E. (2019). Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMRO2. NeuroImage, 197, 742–760. https://doi.org/10.1016/j.neuroimage.2017.07.041
9. Huber, L., Ivanov, D., Krieger, S. N., Streicher, M. N., Mildner, T., Poser, B. A., … Turner, R. (2014). Slab-selective, BOLD-corrected VASO at 7 Tesla provides measures of cerebral blood volume reactivity with high signal-to-noise ratio. Magnetic Resonance in Medicine, 72(1), 137–148. https://doi.org/10.1002/mrm.24916
10. Jin, T., & Kim, S.-G. (2006). Spatial dependence of CBV-fMRI: a comparison between VASO and contrast agent based methods. In International Conference of the IEEE Engineering in Medicine and Biology Society (Vol. 1, pp. 25–28). IEEE. https://doi.org/10.1109/IEMBS.2006.259553
11. Wong EC, Buxton RB, Frank LR. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed. 1997, 10, 237-249.
12. Buxton RB. Quantifying CBF with arterial spin labeling. J Magn Reson Imaging. 2005, 22, 723-726.
13. Uludag K, Dubowitz DJ, Yoder EJ, Restom K, Liu TT, Buxton RB. Coupling of cerebral blood flow and oxygen consumption during physiological activation and deactivation measured with fMRI. Neuroimage. 2004, 23(1), 148-155.
14. Wang YI, Moeller S, Li X, Vu AT, Krasileva K, Ugurbil K, Yacoub E, Wang DJ. Simultaneous multi-slice Turbo-FLASH imaging with CAIPIRINHA for whole brain distortion-free pseudo-continuous arterial spin labeling at 3 and 7 T. Neuroimage. 2015. 113:279-88.
15. Wang, F., Dong, Z., Reese, T. G., Bilgic, B., Katherine Manhard, M., Chen, J. Setsompop, K. (2019). Echo planar time-resolved imaging (EPTI). Magnetic Resonance in Medicine, 81(6), 3599–3615. https://doi.org/10.1002/mrm.27673
16. Dong Z, Wang F, Reese TG, Bilgic B, Setsompop K. Echo planar time‐resolved imaging with subspace reconstruction and optimized spatiotemporal encoding. Magn Reson Med. 2020.
17. Wang F, Dong Z, Tian Q, Chen J, Blazejewska AI, Reese TG, Polimeni JR, Setsompop K. Cortical-depth dependence of pure T 2-weighted BOLD fMRI with minimal T 2’contamination using Echo-Planar Time-resolved Imaging (EPTI). ISMRM 2020. p1229.
18. Uludağ, K., Müller-Bierl, B., & Uğurbil, K. (2009). An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging. NeuroImage, 48(1), 150–165. https://doi.org/10.1016/j.neuroimage.2009.05.051.
19. Mareyam A, Kirsch JE, Chang Y, Madan G, Wald LL. A 64-Channel 7T array coil for accelerated brain MRI, ISMRM 2020, p764.
20. Liang Z-P. Spatiotemporal imagingwith partially separable functions. 2007. IEEE. p 988-991.
21. Lam F, Liang ZP. A subspace approach to high‐resolution spectroscopic imaging. Magn Reson Med. 2014;71(4):1349-1357.
22. Guo R, Zhao Y, Li Y, Wang T, Li Y, Sutton B, Liang ZP. Simultaneous QSM and metabolic imaging of the brain using SPICE: Further improvements in data acquisition and processing. Magn Reson Med. 2020;85(2):970-977.
23. Polimeni, J. R., Renvall, V., Zaretskaya, N., & Fischl, B. (2018). Analysis strategies for high-resolution UHF-fMRI data. NeuroImage, 168, 296–320. https://doi.org/10.1016/j.neuroimage.2017.04.053.
24. Fischl B. FreeSurfer. Neuroimage 2012;62(2):774-781.
25. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage 1999;9(2):179-194.
26. Waehnert M, Dinse J, Weiss M, Streicher MN, Waehnert P, Geyer S, Turner R, Bazin P-L. Anatomically motivated modeling of cortical laminae. Neuroimage 2014;93:210-220.
27. Waehnert MD, Dinse J, Schäfer A, Geyer S, Bazin P-L, Turner R, Tardif CL. A subject-specific framework for in vivo myeloarchitectonic analysis using high resolution quantitative MRI. Neuroimage 2016;125:94-107.