Estimation of diffusion tensor parameters in healthy subjects and patients suffering from neuromuscular disease can be markedly affected by a high rate of spontaneous muscular activities during the MR examination. Therefore, a concept for realistic simulation of spontaneous muscular activities in diffusion tensor imaging and the estimation of their influence on derived parameters is given in this work. The degradation of the derived parameters depends strongly on the robustness of the chosen approach for tensor estimation.
[1]: Chang LC, Jones DK, Pierpaoli C. RESTORE: Robust Estimation of Tensors by Outlier Rejection. Magnetic Resonance in Medicine 53:1088-1095. 2005.
[2]: Chang LC, Walker L, Pierpaoli C. Informed RESTORE: A Method for Robust Estimation of Diffusion Tensor from Low Redundancy Datasets in the Presence of Physiological Noise Artifacts. Magnetic Resonance in Medicine 68:1654-1663. 2012.
[3]: Collier Q, Veraart J, Jeurissen B, den Dekker AJ, Sijbers J. Iterative Reweigted Linear Least Squares for Accurate, Fast, and Robust Estimation of Diffusion Magnetic Resonance Paramters. Magnetic Resonance in Medicine 73:2174-2184. 2015.
[4]: Giraudo C, Motyka S, Weber M, Resinger C, Feiweier T, Traxler H, Trattnig S, Bogner W. Weighted Mean of Signal Intensity for Unbiased Fiber Tracking of Skeletal Muscles. Investigative Radiology 52(8). 2017.
[5]: Karampinos D, Banerjee S, King KF, Link TM, Majumdar S. Considerations in high resolution skeletal muscle DTI using single-shot EPI with stimulated echo preparation and SENSE. NMR Biomed 25(5):766-778. 2012.
[6]: Steidle G, Schick F. Addressing spontaneous signal voids in repetitive single-shot DWI of musculature: spatial and temporal patterns in the calves of healthy volunteers and consideration of unintended muscle activities as underlying mechanism. NMR Biomed 28(7):801-10, 2015.
[7]: Schwartz M, Steidle G, Martirosian P, Ramos-Murguialday A, Preißl H, Stemmer A, Yang B, Schick F. Spontaneous mechanical and electrical activities of human calf musculature at rest assessed by repetitive single-shot diffusion-weighted MRI and simultaneous surface electromyography. Magnetic Resonance in Medicine 79:2784-2794. 2018.
[8]: Whittaker R, Porcari P, Braz L, Williams TL, Schofield IS, Blamire A. Functional magnetic resonance imaging of human motor unit fasciculation in amyotrophic lateral sclerosis. Annals of Neurology 85(3). 2019.
[9]: Schwartz M, Martirosian P, Steidle G, Küstner T, Yang B, Stemmer A, Feiweier T, Schöls L, Synofzik M, Schick F. Measuring Spontaneous Muscular Activities in Neuromuscular Disease: Preliminary Results. Proc. ISMRM 2020.
[10]: Fitzurka MA, Tam DC. A joint interspike interval difference stochastic spike train analysis: detecting local trends in the temporal firing patterns of single neurons. Biological Cybernetics 80:309–326. 1999.
[11]: Kleine BU, Stegeman DF, Schelhaas HJ, Zwarts MJ. Firing pattern of fasciculations in ALS: evidence for axonal and neuronal origin. Neurology 70:353–359. 2008.
[12]: Bashford J, Wickham A, Iniesta R, Drakakis E, Boutelle M, Mills K, Shaw CE. Preprocessing surface EMG data removes voluntary muscle activity and enhances SPiQE fasciculation analysis. Clinical Neurophysiology 131:265–273. 2020.
[13]: Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative Adversarial Networks. NIPS. 2014.
[14]: Mirza M, Osindero S. Conditional Generative Adversarial Nets. arXiv:1411.1784. 2014.
[15]: Gilliam C, Küstner T, Blu T. 3D Motion Flow Estimation using Local All-Pass Filters. Proc. IEEE Int. Symp. Biomed. Imag. (ISBI). 2016.
[16]: Küstner T, Neumann V, Schwartz M, Würslin C, Martirosian P, Gatidis S, Schwenzer NF, Schick F, Yang B, Schmidt H. An MR Motion Correction toolbox for registration and evaluation. ISMRM 2016.
[17]: Ronneberger O, Fischer P, Brox T. U-net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention (MICCAI). Springer, LCNS, Vol.9351:234-241. 2015.
[18]: Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13(4):600–612. 2004.
[19]: Maurer C, Rensheng Q, Raghavan V. A Linear Time Algorithm for Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(2):265-270. 2003.
[20]: Koay CG. Least squares approaches to diffusion tensor estimation. In: Jones D, editor. Diffusion MRI. New York: Oxford University Press:281–343. 2011.
[21]: Koay CG, Chang LC, Carew JD, Pierpaoli C, Basser PJ. A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging. Journal of Magnetic Resonance 182:115–125. 2006.
[22]: Basser PJ, Mattiello J, Le Bihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. Journal of Magnetic Resonance 103: 247–254. 1994.
[23]: Salvador R, Pena A, Menon DK, Carpenter TA, Pickard JD, Bullmore ET. Formal characterization and extension of the linearized diffusion tensor model. Hum Brain Mapp 24:144–155. 2005.
[24]: Veraart J, Sijbers J, Leemans A, Jeurissen B. Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls. NeuroImage 81:335–346. 2013.
[25]: Schwartz M, Küstner T, Martirosian P, Machann J, Steidle G, Yang B, Schick F. Robust Quantification of Spontaneous Muscular Activities by Simultaneous Interpretation of sEMG Data. ESMRMB 2019.
[26]: Schwartz M, Martirosian P, Steidle G, Erb M, Stemmer A, Yang B, Schick F. Volumetric assessment of spontaneous mechanical activities by simultaneous multi-slice MRI techniques with correlation to muscle fiber orientation. NMR Biomed 31(11). 2018.
[27]: Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine 44:625–632. 2000.
[28]: Yeh FC, Verstynen TD, Wang Y, Fernandez‐Miranda JC, Tseng WY. Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS ONE 8(11):e80713. 2013.
[29]: Lansdown DA, Ding Z, Wadington M, Hornberger JL, Damon BM. Quantitative diffusion tensor MRI‐based fiber tracking of human skeletal muscle. J Appl Physiol 103(2):673‐681. 2007.
[30]: Damon BM, Froeling M, Buck AK, Oudeman J, Ding Z, Nederveen AJ, Bush EC, Strijkers GJ. Skeletal muscle diffusion tensor‐MRI fiber tracking: rationale, data acquisition and analysis methods, applications and future directions. NMR Biomed 30(3):e3563. https://doi.org/10.1002/nbm.3563. 2017.
[31]: Lee R. Dice. Measures of the amount of ecologic association between species. Ecology 26:297–302, 1945.