UTE measures of cortical bone water were evaluated in 15 cadaveric proximal femora. Pore water content, total water content, and porosity index were all negatively associated with whole-bone stiffness obtained in a sideways fall loading configuration and with volumetric bone mineral density. In contrast, bound water content was not found to be related to stiffness or mineral density. This data suggest that bone water measures may provide useful information on cortical bone mechanical competence.
1. Cummings, S.R. and L.J. Melton, Epidemiology and outcomes of osteoporotic fractures. Lancet, 2002. 359(9319): p. 1761-7.
2. Leibson, C.L., A.N. Tosteson, S.E. Gabriel, J.E. Ransom, and L.J. Melton, Mortality, disability, and nursing home use for persons with and without hip fracture: a population-based study. J Am Geriatr Soc, 2002. 50(10): p. 1644-50.
3. Seeman, E., Age- and menopause-related bone loss compromise cortical and trabecular microstructure. J Gerontol A Biol Sci Med Sci, 2013. 68(10): p. 1218-25.
4. Seeman, E. and P.D. Delmas, Bone quality--the material and structural basis of bone strength and fragility. N Engl J Med, 2006. 354(21): p. 2250-61.
5. Allen, M.R., J.M. Hock, and D.B. Burr, Periosteum: biology, regulation, and response to osteoporosis therapies. Bone, 2004. 35(5): p. 1003-12.
6. Iori, G., J. Schneider, A. Reisinger, F. Heyer, L. Peralta, C. Wyers, M. Gräsel, R. Barkmann, C.C. Glüer, J.P. van den Bergh, D. Pahr, and K. Raum, Large cortical bone pores in the tibia are associated with proximal femur strength. PLOS ONE, 2019. 14(4): p. e0215405.
7. Mirzaali, M.J., J.J. Schwiedrzik, S. Thaiwichai, J.P. Best, J. Michler, P.K. Zysset, and U. Wolfram, Mechanical properties of cortical bone and their relationships with age, gender, composition and microindentation properties in the elderly. Bone, 2016. 93: p. 196-211.
8. Kral, R., M. Osima, R. Vestgaard, E. Richardsen, and Å. Bjørnerem, Women with fracture, unidentified by FRAX, but identified by cortical porosity, have a set of characteristics that contribute to their increased fracture risk beyond high FRAX score and high cortical porosity. Bone, 2018. 116: p. 259-265.
9. Samelson, E.J., K.E. Broe, H. Xu, L. Yang, S. Boyd, E. Biver, P. Szulc, J. Adachi, S. Amin, E. Atkinson, C. Berger, L. Burt, R. Chapurlat, T. Chevalley, S. Ferrari, D. Goltzman, D.A. Hanley, M.T. Hannan, S. Khosla, C.T. Liu, M. Lorentzon, D. Mellstrom, B. Merle, M. Nethander, R. Rizzoli, E. Sornay-Rendu, B. Van Rietbergen, D. Sundh, A.K.O. Wong, C. Ohlsson, S. Demissie, D.P. Kiel, and M.L. Bouxsein, Cortical and trabecular bone microarchitecture as an independent predictor of incident fracture risk in older women and men in the Bone Microarchitecture International Consortium (BoMIC): a prospective study. Lancet Diabetes Endocrinol, 2019. 7(1): p. 34-43.
10. Horch, R.A., D.F. Gochberg, J.S. Nyman, and M.D. Does, Non-invasive Predictors of Human Cortical Bone Mechanical Properties: T2-Discriminated 1H NMR Compared with High Resolution X-ray. PLOS ONE, 2011. 6(1): p. e16359.
11. Seifert, A.C., S.L. Wehrli, and F.W. Wehrli, Bi-component T2 * analysis of bound and pore bone water fractions fails at high field strengths. NMR Biomed, 2015. 28(7): p. 861-72.
12. Seifert, A.C., C. Li, C.S. Rajapakse, M. Bashoor-Zadeh, Y.A. Bhagat, A.C. Wright, B.S. Zemel, A. Zavaliangos, and F.W. Wehrli, Bone mineral (31)P and matrix-bound water densities measured by solid-state (31)P and (1)H MRI. NMR in biomedicine, 2014. 27(7): p. 739-748.
13. Seifert, A.C., C. Li, S.L. Wehrli, and F.W. Wehrli, A Surrogate Measure of Cortical Bone Matrix Density by Long T2 -Suppressed MRI. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 2015. 30(12): p. 2229-2238.
14. Zhao, X., H.K. Song, A.C. Seifert, C. Li, and F.W. Wehrli, Feasibility of assessing bone matrix and mineral properties in vivo by combined solid-state 1H and 31P MRI. PLOS ONE, 2017. 12(3): p. e0173995.
15. Chen, J., S.P. Grogan, H. Shao, D. D'Lima, G.M. Bydder, Z. Wu, and J. Du, Evaluation of bound and pore water in cortical bone using ultrashort-TE MRI. NMR in biomedicine, 2015. 28(12): p. 1754-1762.
16. Du, J., E. Diaz, M. Carl, W. Bae, C.B. Chung, and G.M. Bydder, Ultrashort echo time imaging with bicomponent analysis. Magnetic Resonance in Medicine, 2012. 67(3): p. 645-649.
17. Jerban, S., X. Lu, E.W. Dorthe, S. Alenezi, Y. Ma, L. Kakos, H. Jang, R.L. Sah, E.Y. Chang, D. D'Lima, and J. Du, Correlations of cortical bone microstructural and mechanical properties with water proton fractions obtained from ultrashort echo time (UTE) MRI tricomponent T2* model. NMR Biomed, 2020. 33(3): p. e4233.
18. Lu, X., S. Jerban, L. Wan, Y. Ma, H. Jang, N. Le, W. Yang, E.Y. Chang, and J. Du, Three-dimensional ultrashort echo time imaging with tricomponent analysis for human cortical bone. Magn Reson Med, 2019. 82(1): p. 348-355.
19. Rajapakse, C.S., M. Bashoor-Zadeh, C. Li, W. Sun, A.C. Wright, and F.W. Wehrli, Volumetric Cortical Bone Porosity Assessment with MR Imaging: Validation and Clinical Feasibility. Radiology, 2015. 276(2): p. 526-35.
20. Hong, A.L., M. Ispiryan, M.V. Padalkar, B.C. Jones, A.S. Batzdorf, S.S. Shetye, N. Pleshko, and C.S. Rajapakse, MRI-derived bone porosity index correlates to bone composition and mechanical stiffness. Bone Rep, 2019. 11: p. 100213.
21. Jones, B.C., S. Jia, H. Lee, A. Feng, S.S. Shetye, A. Batzdorf, N. Shapira, P.B. Noël, N. Pleshko, and C.S. Rajapakse, MRI-derived porosity index is associated with whole-bone stiffness and mineral density in human cadaveric femora. Bone, 2020: p. 115774.
22. Manhard, M.K., S. Uppuganti, M. Granke, D.F. Gochberg, J.S. Nyman, and M.D. Does, MRI-derived bound and pore water concentrations as predictors of fracture resistance. Bone, 2016. 87: p. 1-10.
23. Bae, W.C., P.C. Chen, C.B. Chung, K. Masuda, D. D'Lima, and J. Du, Quantitative ultrashort echo time (UTE) MRI of human cortical bone: correlation with porosity and biomechanical properties. J Bone Miner Res, 2012. 27(4): p. 848-57.
24. Rajapakse, C.S., A.R. Farid, D.C. Kargilis, B.C. Jones, J.S. Lee, A.J. Johncola, A.S. Batzdorf, S.S. Shetye, M.W. Hast, and G. Chang, MRI-based assessment of proximal femur strength compared to mechanical testing. Bone, 2020. 133: p. 115227.
25. Li, C., J.F. Magland, X. Zhao, A.C. Seifert, and F.W. Wehrli, Selective in vivo bone imaging with long-T(2) suppressed PETRA MRI. Magn Reson Med, 2017. 77(3): p. 989-997.
26. Rad, H.S., S.C. Lam, J.F. Magland, H. Ong, C. Li, H.K. Song, J. Love, and F.W. Wehrli, Quantifying cortical bone water in vivo by three-dimensional ultra-short echo-time MRI. NMR Biomed, 2011. 24(7): p. 855-64.
27. Techawiboonwong, A., H.K. Song, M.B. Leonard, and F.W. Wehrli, Cortical bone water: in vivo quantification with ultrashort echo-time MR imaging. Radiology, 2008. 248(3): p. 824-833. 28. Zhao, X., H. Lee, H.K. Song, C.C. Cheng, and F.W. Wehrli, Impact of gradient imperfections on bone water quantification with UTE MRI. Magn Reson Med, 2020. 84(4): p. 2034-2047.