Patients hospitalized with the new coronavirus disease (COVID-19) have shown severe changes in the central nervous system (CNS), particularly microhaemorrhages and encephalitis. However, long-term effects on the CNS haven not yet been fully characterised. In this study we scanned a group of 14 recently hospitalized COVID-19 patients at ultra-high field (7T) and analysed the microstructural changes measured by quantitative susceptibility mapping (QSM) from both subcortical nuclei and brainstem, which are thought to be targeted by the virus.
1. Newcombe, V.F., Spindler, L.R., Das, T., Winzeck, S., Allinson, K., Stamatakis, E.A. and Menon, D.K., 2020. Neuroanatomical substrates of generalized brain dysfunction in COVID-19. Intensive care medicine, pp.1-3.
2. Kremer, S., Lersy, F., de Sèze, J., Ferré, J.C., Maamar, A., Carsin-Nicol, B., Collange, O., Bonneville, F., Adam, G., Martin-Blondel, G. and Rafiq, M., 2020. Brain MRI findings in severe COVID-19: a retrospective observational study. Radiology, 297(2), pp.E242-E251.
3. Hascup, E.R. and Hascup, K.N., 2020. Does SARS-CoV-2 infection cause chronic neurological complications?. GeroScience, p.1.
4. Hopkins, R.O., Weaver, L.K., Collingridge, D., Parkinson, R.B., Chan, K.J. and Orme Jr, J.F., 2005. Two-year cognitive, emotional, and quality-of-life outcomes in acute respiratory distress syndrome. American journal of respiratory and critical care medicine, 171(4), pp.340-347.
5. Limphaibool, N., Iwanowski, P., Holstad, M.J.V., Kobylarek, D. and Kozubski, W., 2019. Infectious etiologies of Parkinsonism: pathomechanisms and clinical implications. Frontiers in neurology, 10, p.652.
6. Rogers, J.P., Chesney, E., Oliver, D., Pollak, T.A., McGuire, P., Fusar-Poli, P., Zandi, M.S., Lewis, G. and David, A.S., 2020. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. The Lancet Psychiatry.
7. Deistung, A., Schweser, F. and Reichenbach, J.R., 2017. Overview of quantitative susceptibility mapping. NMR in Biomedicine, 30(4), p.e3569.
8. Deistung, A., Schweser, F., Wiestler, B., Abello, M., Roethke, M., Sahm, F., Wick, W., Nagel, A.M., Heiland, S., Schlemmer, H.P. and Bendszus, M., 2013. Quantitative susceptibility mapping differentiates between blood depositions and calcifications in patients with glioblastoma. PloS one, 8(3), p.e57924.
9. Clarke, W.T., Mougin, O., Driver, I.D., Rua, C., Morgan, A.T., Asghar, M., Clare, S., Francis, S., Wise, R.G., Rodgers, C.T. and Carpenter, A., 2020. Multi-site harmonization of 7 tesla MRI neuroimaging protocols. Neuroimage, 206, p.116335.
10. Acosta-Cabronero, J., Milovic, C., Mattern, H., Tejos, C., Speck, O. and Callaghan, M.F., 2018. A robust multi-scale approach to quantitative susceptibility mapping. Neuroimage, 183, pp.7-24.
11. Avants, B.B., Epstein, C.L., Grossman, M. and Gee, J.C., 2008. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical image analysis, 12(1), pp.26-41.
12. Edlow, B.L., Takahashi, E., Wu, O., Benner, T., Dai, G., Bu, L., Grant, P.E., Greer, D.M., Greenberg, S.M., Kinney, H.C. and Folkerth, R.D., 2012. Neuroanatomic connectivity of the human ascending arousal system critical to consciousness and its disorders. Journal of Neuropathology & Experimental Neurology, 71(6), pp.531-546.
13. Frazier, J.A., Chiu, S., Breeze, J.L., Makris, N., Lange, N., Kennedy, D.N., Herbert, M.R., Bent, E.K., Koneru, V.K., Dieterich, M.E. and Hodge, S.M., 2005. Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder. American Journal of Psychiatry, 162(7), pp.1256-1265.
14. Ye, R., Rua, C., O’Callaghan, C., Jones, P.J., Hezemans, F.H., Kaalund, S.S., Tsvetanov, K.A., Rodgers C.T., Williams, G.B., Passamonti, L., and Rowe, J.B., 2020.An in vivo probabilistic atlas of the locus coeruleus at ultra-high field. Neuroimage, 225, pp.117487.
15. Iglesias, J.E., Van Leemput, K., Bhatt, P., Casillas, C., Dutt, S., Schuff, N., Truran-Sacrey, D., Boxer, A., Fischl, B. and Alzheimer's Disease Neuroimaging Initiative, 2015. Bayesian segmentation of brainstem structures in MRI. Neuroimage, 113, pp.184-195.
16. O'Callaghan, C., Hezemans, F.H., Ye, R., Rua, C., Jones, S.P, Murley, A.G., Holland, N., Regenthal, R., Tsvetanov, K., Wolpe, N., Barker, R., Williams-Gray, C., Robbins, T., Passamonti, L., and Rowe, J.B., 2020. Locus coeruleus integrity and the effect of atomoxetine on response inhibition in Parkinson's disease, medRxiv.
17. Kass, R.E. and Raftery, A.E., 1995. Bayes factors. Journal of the american statistical association, 90(430), pp.773-795.
18. Acosta-Cabronero, J., Betts, M.J., Cardenas-Blanco, A., Yang, S. and Nestor, P.J., 2016. In vivo MRI mapping of brain iron deposition across the adult lifespan. Journal of Neuroscience, 36(2), pp.364-374.