In large public multi-site fMRI datasets, the sample characteristics, data acquisition methods and pre-processing approaches vary across sites and datasets, leading to poor diagnostic classification. Domain adaptation aims to improve the classification performance in target domain data by utilizing the knowledge learned from the source domain, and making the distributions of data in source and target domains as similar as possible. In this sense, domain adaptation is one method that can be used to achieve and optimize transfer learning by using different datasets.
1. Durstewitz, Daniel & Koppe, Georgia & Meyer-Lindenberg, Andreas. (2019). Deep neural networks in psychiatry. Molecular Psychiatry. 24. 1. 10.1038/s41380-019-0365-9.
2. Wen, D., Wei, Z., Zhou, Y., Li, G., Zhang, X., & Han, W. (2018). Deep Learning Methods to Process fMRI Data and Their Application in the Diagnosis of Cognitive Impairment: A Brief Overview and Our Opinion. Frontiers in neuroinformatics, 12, 23. doi:10.3389/fninf.2018.00023
3. Vieira, S., Pinaya, W.H., & Mechelli, A. (2017). Using deep learning to investigate theneuroimaging correlates of psychiatric and neurological disorders: Methods and applications. Neuroscience & Biobehavioral Reviews, 74, 58-75.
4. Nielsen, J.A., et al., (2013). Multisite functional connectivity MRI classification of autism: ABIDE results. Front. Hum. Neurosci. 7 (September), 1–12.
5. Di Martino, A., O’Connor, D., Chen, B. et al. Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Sci Data 4, 170010 (2017)
6. Horien, C., Noble, S., Greene, A.S. et al. A hitchhiker’s guide to working with large, open-source neuroimaging datasets. Nat Hum Behav (2020).
7. Nielsen, J. A., Zielinski, B. A., Fletcher, P. T., Alexander, A. L., Lange, N., Bigler, E. D., Lainhart, J. E., & Anderson, J. S. (2013). Multisite functional connectivity MRI classification of autism: ABIDE results. Frontiers in human neuroscience, 7, 599.
8. P Lanka, D Rangaprakash, MN Dretsch, JS Katz, TS Denney, G Deshpande, "Supervised machine learning for diagnostic classification from large-scale neuroimaging datasets", Brain Imaging and Behavior, 2019 (in press).
9. X. Li, Y. Gu, N. Dvornek, L. Staib, P. Ventola and J. Duncan, "Multi-site fMRI Analysis Using Privacy-preserving Federated Learning and Domain Adaptation: ABIDE Results," Medical Image Analysis, p. 101765, 2020.
10. Zhou, S., Cox, C., & Lu, H. (2018). Improving Whole-Brain Neural Decoding of fMRI with Domain Adaptation. bioRxiv.
11. Jean-Philippe Fortin, Drew Parker, Birkan Tunc, Takanori Watanabe, Mark A Elliott, Kosha Ruparel, David R Roalf, Theodore D Satterthwaite, Ruben C Gur, Raquel E Gur, Robert T Schultz, Ragini Verma, Russell T Shinohara. Harmonization Of Multi-Site Diffusion Tensor Imaging Data. NeuroImage, 161, 149-170, 2017
12. Fortin, J. P., Cullen, N., Sheline, Y. I., Taylor, W. D., Aselcioglu, I., Cook, P. A., Adams, P., Cooper, C., Fava, M., McGrath, P. J., McInnis, M., Phillips, M. L., Trivedi, M. H., Weissman, M. M., & Shinohara, R. T. (2018). Harmonization of cortical thickness measurements across scanners and sites. NeuroImage, 167, 104–120.
13. W. Evan Johnson and Cheng Li, Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8(1):118-127, 2007.
14. Snoek LvdM, M.M; Beemsterboer, T.; van der Leij, A.; Eigenhuis, A.; Scholte, H.S. The Amsterdam Open MRI Collection, a set of multimodal MRI datasets for individual difference analyses. bioRxiv, (2020).
15. Alexander LM, et al. An open resource for transdiagnostic research in pediatric mental health and learning disorders. Sci Data 4, 170181 (2017).
16. D. Kingma and M. Welling, "Auto-Encoding Variational Bayes," 2014.
17. M. Belhaj, P. Protopapas and W. Pan, "Deep Variational Transfer: Transfer Learning through Semi-supervised Deep Generative Models.," 2018.
18. H. Chen and J. Chien, "Deep semi-supervised learning for domain adaptation," in 2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP), Boston, MA, 2015.
19. A. Rahimi and B. Recht, "Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning," In Advances in neural information processing systems, p. 1313– 1320, 2009.
20. C. Louizos, K. Swersky, Y. Li, M. Welling and R. Zemel, "The variational fair autoencoder," in International Conference on Learning Representations (ICLR), 2016.
21. Srivastava, Nitish & Hinton, Geoffrey & Krizhevsky, Alex & Sutskever, Ilya & Salakhutdinov, Ruslan. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research. 15. 1929-1958.
22. Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain connectivity, 2(3), 125-141
23. L. v. d. Maaten and G. Hinton, "Visualizing data using t-sne," Journal of machine learning research, vol. 9, no. Nov, p. 2579–2605, 2008.
24. W. M. Kouw and M. Loog, "A review of domain adaptation without target labels," in IEEE Transactions on Pattern Analysis and Machine Intelligence, doi: 10.1109/TPAMI.2019.2945942.